首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we propose a hybrid optimization method, consisting of an evolutionary algorithm (EA) and a branch-and-bound method (BnB) for solving the capacitated single allocation hub location problem (CSAHLP). The EA is designed to explore the solution space and to select promising configurations of hubs (the location part of the problem). Hub configurations produced by the EA are further passed to the BnB search, which works with fixed hubs and allocates the non-hub nodes to located hubs (the allocation part of the problem). The BnB method is implemented using parallelization techniques, which results in short running times. The proposed hybrid algorithm, named EA-BnB, has been tested on the standard Australia Post (AP) hub data sets with up to 300 nodes. The results demonstrate the superiority of our hybrid approach over existing heuristic approaches from the existing literature. The EA-BnB method has reached all the known optimal solutions for AP hub data set and found new, significantly better, solutions on three AP instances with 100 and 200 nodes. Furthermore, the extreme efficiency of the implementation of this hybrid algorithm resulted in short running times, even for the largest AP test instances.  相似文献   

2.
The hub location problem is to find a set of hub nodes on the network, where logistics transportation via the hubs is encouraged because of the cost or distance savings. Each node that has a specified amount of demands can be connected to one of p hubs. The uncapacitated single allocation p-hub maximal covering problem is to maximize the logistics covered, where the logistics of demand is said to be covered if the distance between two nodes is less than or equal to the specified range in consideration of the distance savings between hubs. The aim of our model is to locate the hub, and to allocate non-hub nodes to the located hub nodes; the hub can maximize the demand covered by deadline traveling time. It is presented an integer programming formulation for the new hub covering model, and a computational study based on several instances derived from the CAB (Civil Aeronautics Board) data set. Two heuristics, distance based allocation and volume based allocation methods, are suggested with a computational experiment on the CAB data set. Performances of heuristics are evaluated, and it is shown that good solutions are found in a relatively reasonable computation time for most of instances.  相似文献   

3.
Given a set of n interacting points in a network, the hub location problem determines location of the hubs (transfer points) and assigns spokes (origin and destination points) to hubs so as to minimize the total transportation cost. In this study, we deal with the uncapacitated single allocation planar hub location problem (PHLP). In this problem, all flow between pairs of spokes goes through hubs, capacities of hubs are infinite, they can be located anywhere on the plane and are fully connected, and each spoke must be assigned to only one hub. We propose a mathematical formulation and a genetic algorithm (PHLGA) to solve PHLP in reasonable time. We test PHLGA on simulated and real life data sets. We compare our results with optimal solution and analyze results for special cases of PHLP for which the solution behavior can be predicted. Moreover, PHLGA results for the AP and CAB data set are compared with other heuristics.  相似文献   

4.
Hub-and-spoke networks are widely studied in the area of location theory. They arise in several contexts, including passenger airlines, postal and parcel delivery, and computer and telecommunication networks. Hub location problems usually involve three simultaneous decisions to be made: the optimal number of hub nodes, their locations and the allocation of the non-hub nodes to the hubs. In the uncapacitated single allocation hub location problem (USAHLP) hub nodes have no capacity constraints and non-hub nodes must be assigned to only one hub. In this paper, we propose three variants of a simple and efficient multi-start tabu search heuristic as well as a two-stage integrated tabu search heuristic to solve this problem. With multi-start heuristics, several different initial solutions are constructed and then improved by tabu search, while in the two-stage integrated heuristic tabu search is applied to improve both the locational and allocational part of the problem. Computational experiments using typical benchmark problems (Civil Aeronautics Board (CAB) and Australian Post (AP) data sets) as well as new and modified instances show that our approaches consistently return the optimal or best-known results in very short CPU times, thus allowing the possibility of efficiently solving larger instances of the USAHLP than those found in the literature. We also report the integer optimal solutions for all 80 CAB data set instances and the 12 AP instances up to 100 nodes, as well as for the corresponding new generated AP instances with reduced fixed costs.  相似文献   

5.
We study the hub location and routing problem where we decide on the location of hubs, the allocation of nodes to hubs, and the routing among the nodes allocated to the same hubs, with the aim of minimizing the total transportation cost. Each hub has one vehicle that visits all the nodes assigned to it on a cycle. We propose a mixed integer programming formulation for this problem and strengthen it with valid inequalities. We devise separation routines for these inequalities and develop a branch-and-cut algorithm which is tested on CAB and AP instances from the literature. The results show that the formulation is strong and the branch-and-cut algorithm is able to solve instances with up to 50 nodes.  相似文献   

6.
A different approach to the capacitated single allocation hub location problem is presented. Instead of using capacity constraints to limit the amount of flow that can be received by the hubs, we introduce a second objective function to the model (besides the traditional cost minimizing function), that tries to minimize the time to process the flow entering the hubs. Two bi-criteria single allocation hub location problems are presented: in a first model, total time is considered as the second criteria and, in a second model, the maximum service time for the hubs is minimized. To generate non-dominated solutions an interactive decision-aid approach developed for bi-criteria integer linear programming problems is used. Both bi-criteria models are tested on a set of instances, analyzing the corresponding non-dominated solutions set and studying the reasonableness of the hubs flow charge for these non-dominated solutions. The increased information provided by the non-dominated solutions of the bi-criteria model when compared to the unique solution given by the capacitated hub location model is highlighted.  相似文献   

7.
Hub facilities may fail to operate in networks because of accidental failures such as natural disasters. In this paper, a quadratic model was presented for a reliable single allocation hub network under massive random failure of hub facilities which more than one hub may be disrupted in a route. It determines the location of the hub facilities and the primal allocation of non-hub nodes. It also determines the backup allocation in case of failure of the primal hub. First, a new lexicographic form of a bi-objective quadratic model is presented where the first objective maximizes served demands or equivalently, minimizes lost flows and the second objective minimizes total cost under a to massive disruption in the network. Then, by adding a structure-based constraint, the model is transformed to a single objective one. A linearization technique reported in the literature is applied on the quadratic model to convert it into classic linear zero–one mixed integer model while enhancing it by finding tighter bounds. The tight bounds’ technique is compared with other techniques in terms of computational time and its better performance was approved in some problem instances. Finally, due to the NP-hardness of the problem, an iterated local search algorithm was developed to solve large sized instances in a reasonable computational time and the computational results confirm the efficiency of the proposed heuristic, ILS can solve all CAB and IAD data set instances in less than 15 and 24 seconds, respectively. Moreover, the proposed model was compared with the classical hub network using a network performance measure, and the results show the increased efficiency of the model.  相似文献   

8.
We consider the multiple allocation hub maximal covering problem (MAHMCP): Considering a serviced O–D flow was required to reach the destination optionally passing through one or two hubs in a limited time, cost or distance, what is the optimal way to locate p hubs to maximize the serviced flows? By designing a new model for the MAHMCP, we provide an evolutionary approach based on path relinking. The Computational experience of an AP data set was presented. And a special application on hub airports location of Chinese aerial freight flows between 82 cities in 2002 was introduced.  相似文献   

9.
Hubs are special facilities that serve as switching, transshipment and sorting nodes in many-to-many distribution systems. Flow is consolidated at hubs to exploit economies of scale and to reduce transportation costs between hubs. In this article, we first identify general features of optimal hub locations for single allocation hub location problems based on only the fundamental problem data (demand for travel and spatial locations). We then exploit this knowledge to develop a straightforward heuristic methodology based on spatial proximity of nodes, dispersion and measures of node importance to delineate subsets of nodes likely to contain optimal hubs. We then develop constraints for these subsets for use in mathematical programming formulations to solve hub location problems. Our methodology can also help narrow an organization’s focus to concentrate on more detailed and qualitative analyses of promising potential hub locations. Results document the value of including both demand magnitude and centrality in measuring node importance and the relevant tradeoffs in solution quality and time.  相似文献   

10.
Hubs are facilities that consolidate and disseminate flow in many-to-many distribution systems. The hub location problem considers decisions that include the locations of hubs in a network and the allocations of demand (non-hub) nodes to these hubs. We propose a hierarchical multimodal hub network structure, and based on this network, we define a hub covering problem with a service time bound. The hierarchical network consists of three layers in which we consider a ring-star-star (RSS) network. This multimodal network may have different types of vehicles in each layer. For the proposed problem, we present and strengthen a mathematical model with some variable fixing rules and valid inequalities. Also, we develop a heuristic solution algorithm based on the subgradient approach to solve the problem in more reasonable times. We conduct the computational analysis over the Turkish network and the CAB data sets.  相似文献   

11.
The hub median problem is to locate hub facilities in a network and to allocate non-hub nodes to hub nodes such that the total transportation cost is minimized. In the hub center problem, the main objective is one of minimizing the maximum distance/cost between origin destination pairs. In this paper, we study uncapacitated hub center problems with either single or multiple allocation. Both problems are proved to be NP-hard. We even show that the problem of finding an optimal single allocation with respect to a given set of hubs is already NP-hard. We present integer programming formulations for both problems and propose a branch-and-bound approach for solving the multiple allocation case. Numerical results are reported which show that the new formulations are superior to previous ones.  相似文献   

12.
The single allocation p-hub center problem is an NP-hard location–allocation problem which consists of locating hub facilities in a network and allocating non-hub nodes to hub nodes such that the maximum distance/cost between origin–destination pairs is minimized. In this paper we present an exact 2-phase algorithm where in the first phase we compute a set of potential optimal hub combinations using a shortest path based branch and bound. This is followed by an allocation phase using a reduced sized formulation which returns the optimal solution. In order to get a good upper bound for the branch and bound we developed a heuristic for the single allocation p-hub center problem based on an ant colony optimization approach. Numerical results on benchmark instances show that the new solution approach is superior over traditional MIP-solver like CPLEX. As a result we are able to provide new optimal solutions for larger problems than those reported previously in literature. We are able to solve problems consisting of up to 400 nodes in reasonable time. To the best of our knowledge these are the largest problems solved in the literature to date.  相似文献   

13.
Because of their widespread use in real-world transportation situations, hub location models have been extensively studied in the last two decades. Many types of hub location problems are NP-hard and remain unmanageable when the number of nodes exceeds 200. We present a way to tackle large-sized problems using aggregation, explore the resulting error, and show how to reduce it. Furthermore, we develop a heuristic based on aggregation for k-hub center problems and present computational results.  相似文献   

14.
HubLocator is a new branch-and-bound procedure for the uncapacitated multiple allocation hub location problem. An existing optimal method developed by Klincewicz (Location Sci. 4 (1996) 173) is based on dual ascent and dual adjustment techniques applied to a disaggregated model formulation. These techniques have already successfully been used to solve the closely related simple plant location problem. However, due to the specific structure of the problem at hand, the success of these techniques in reducing the computational effort is rather restricted. Therefore, HubLocator additionally considers an aggregated model formulation enabling us to significantly tighten the lower bounds. Upper bounds which satisfy complementary slackness conditions for some constraints are constructed and improved by means of a simple heuristic procedure. Computational experiments demonstrate that optimal solutions for problems with up to 40 nodes can be found in a reasonable amount of time.Scope and purposeGround and air transportation networks, postal delivery networks, and computer networks are often configured as hub-and-spoke systems. Traffic between two locations is not transported directly between these locations, but routed via particular switching or consolidation points called hubs. Due to increased traffic on linkages between hubs, larger vehicles can be used or the capacity of existing vehicles can be utilized more efficiently, resulting in smaller per unit transportation costs. The exploitation of scale economies as a result of the reduced number of linkages, which have to be operated in a hub-and-spoke system, compared to a fully interconnected network is an important advantage of this type of system.Designing hub-and-spoke networks deals with the selection of hubs from a given set of potential locations and the routing of traffic. We consider a special type of such a hub location problem and adapt a successful technique developed to find an optimal solution for the well-known simple plant location problem.  相似文献   

15.
We consider the hub location problem, where p hubs are chosen from a given set of nodes, each nonhub node is connected to exactly one hub and each hub is connected to a central hub. Links are installed on the arcs of the resulting network to route the traffic. The aim is to find the hub locations and the connections to minimize the link installation cost. We propose two formulations and a heuristic algorithm to solve this problem. The heuristic is based on Lagrangian relaxation and local search. We present computational results where formulations are compared and the quality of the heuristic solutions are tested.  相似文献   

16.
In telecommunication and transportation systems, the uncapacitated multiple allocation hub location problem (UMAHLP) arises when we must flow commodities or information between several origin–destination pairs. Instead of establishing a direct node to node connection from an origin to its destination, the flows are concentrated with others at facilities called hubs. These flows are transported on links established between hubs, being then splitted and delivered to its final destination. Systems with this sort of topology are named hub-and-spoke (HS) systems or hub-and-spoke networks. They are designed to exploit the scale economies attainable through the shared use of high capacity links between hubs. Therefore, the problem is to find the least expensive HS network, selecting hubs and assigning traffic to them, given the demands between each origin–destination pair and the respective transportation costs. In the present paper, we present efficient Benders decomposition algorithms based on a well known formulation to tackle the UMAHLP. We have been able to solve some large instances, considered ‘out of reach’ of other exact methods in reasonable time.  相似文献   

17.
It is only recently that good formulations and properties for the basic versions of the hub location problem have become available. Now, versions closer to reality can be tackled with greater guarantees of success. This article deals with the case in which the capacity of the hubs is limited. The focus is on the following interpretation of this capacity: there is, for each hub, an upper bound on the total flow coming directly from the origins. Our problem has the so-called multiple allocation possibility, i.e., there is no hub associated to each node; on the contrary, flows with, say, the same origin but different destinations, can be sent through different routes. Moreover, it is assumed that the flow between a given origin–destination pair can be split into several routes; if this is not the case, the problem becomes quite different and cannot be approached by means of the techniques used in this paper.Tight integer linear programming formulations for the problem are presented, along with some useful properties of the optimal solutions which can be used to speed up the resolution.The computational experience shows that instances of medium size can be solved very efficiently using the new method, which outperforms other methods given in the literature.  相似文献   

18.
In this paper we study the hub location problem, where the goal is to identify an optimal subset of facilities (hubs) to minimize the transportation cost while satisfying certain capacity constraints. In particular, we target the single assignment version, in which each node in the transportation network is assigned to only one hub to route its traffic. We consider here a realistic variant introduced previously, in which the capacity of edges between hubs is increased in a modular way. This reflects the practical situation in air traffic where the number of flights between two locations implies a capacity in terms of number of passengers. Then, the capacity can be increased in a modular way, as a factor of the number of flights. We propose heuristic methods to obtain high-quality solutions in short computing times. Specifically, we implement memory structures to create advanced search methods and compare them with previous heuristics on a set of benchmark instances. Memory structures have been widely implemented in the context of the tabu search methodology, usually embedded in local search algorithms. In this paper we explore an alternative design in which the constructive method is enhanced with frequency information and the local search is coupled with a path relinking post-processing. Statistical tests confirm the superiority of our proposal with respect to previous developments.  相似文献   

19.
Solving the hub location problem with modular link capacities   总被引:3,自引:2,他引:1  
This paper deals with a capacitated hub location problem arising in the design of telecommunications networks. The problem is different from the classical hub location problem in two ways: the cost of using an edge is not linear but stepwise and the capacity of a hub restricts the amount of traffic transiting through the hub rather than the incoming traffic. In this paper both an exact and a heuristic method are presented. They are compared and combined in a heuristic concentration approach to investigate whether it is possible to improve the results within limited computational times.  相似文献   

20.
The discrete ordered median location model is a powerful tool in modeling classic and alternative location problems that have been applied with success to a large variety of discrete location problems. Nevertheless, although hub location models have been analyzed from the sum, maximum and coverage point of views, as far as we know, they have never been considered under an alternative unifying point of view. In this paper we consider new formulations, based on the ordered median objective function, for hub location problems with new distribution patterns induced by the different users’ roles within the supply chain network. This approach introduces some penalty factors associated with the position of an allocation cost with respect to the sorted sequence of these costs. First we present basic formulations for this problem, and then develop stronger formulations by exploiting properties of the model. The performance of all these formulations is compared by means of a computational analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号