首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morpholine basic ionic liquid was synthesized with N-methyl morpholine, N-butyl bromide, and KOH by two-step method and was used to catalyze the transesterification of soybean oil with methanol to biodiesel. The structure of the catalyst were examined by 1H nuclear magnetic resonance. The effects of the molar ratio of methanol to oil, reaction temperature, and amount of catalyst on the biodiesel yield were investigated. Optimized biodiesel yield of 94.5% was achieved with catalyst amount of 3.0 wt%, and methanol to soybean oil molar ratio of 14:1 at reaction temperature of 60 °C for 6 h. The catalyst has maintained sustained activity after being employed to six cycles. The prepared biodiesel component was analyzed by gas chromatography-mass spectrometry (GC-MS) and the results showed that the biodiesel comprised of hexadecanoic acid methyl ester, 10, 13-octadecadienoic acid methyl ester, 9-octadecenoic acid methyl ester, and octadecanoic acid methyl ester, illustrating that fatty acids of soybean oil were converted completely.  相似文献   

2.
A comparative study of vegetable oil methyl esters (biodiesels)   总被引:1,自引:0,他引:1  
In the present study, rubber seed oil, coconut oil and palm kernel oil, which are locally available especially in Kerala (India), are chosen and their transesterification processes have been investigated. The various process variables like temperature, catalyst concentration, amount of methanol and reaction time were optimized. Biodiesel from rubber seed oil (with high free fatty acid) was produced by employing two-step pretreatment process (acid esterification) to reduce acid value from 48 to 1.72 mg KOH/g with 0.40 and 0.35 v/v methanol-oil ratio and 1.0% v/v H2SO4 as catalyst at a temperature of 63(±2) °C with 1 h reaction time followed by transesterification using methanol-oil ratio of 0.30 v/v, 0.5 w/v KOH as alkaline catalyst at 55(±2) °C with 40 min reaction time to yield 98-99% biodiesel. Coconut oil and palm oil, being edible oils, transesterification with 0.25 v/v methanol-oil ratio, 0.50% w/v KOH as at 58(±2) °C, 20 min reaction time for coconut oil and 0.25% v/v methanol-oil ratio, 0.50% w/v KOH as alkaline catalyst at 60(±2) °C for palm kernel oil will convert them to 98-99% biodiesel. The brake thermal efficiency of palm oil biodiesel was higher with lower brake specific fuel consumption, but rubber seed oil biodiesel(ROB) showed less emission (CO and NOx) compared to other biodiesels.  相似文献   

3.
The present work reports the production of biodiesel from Silurus triostegus Heckel fish oil (STFO) through alkaline-catalyzed transesterification by using potassium hydroxide (KOH) as an alkaline catalyst with methanol. Chemical and physical properties of the extracted oil were determined. It was found that STFO has a low acid value (1.90 mg KOH/g oil); hence no pre-treatment such as acid esterification is required to produce the biodiesel. The influence of the experimental parameters such as KOH concentration (0.25–1.0% w/w of oil), methanol to oil molar ratio (3:1, 6:1, 9:1 and 12:1), reaction temperature (32, 45 and 60 °C), reaction duration (30, 60, 90 and 120 min), type of the catalyst (potassium or sodium hydroxide) and step multiplicity (single- and two-step transesterification) on the yield of the biodiesel were investigated. The maximum biodiesel yield (96%) was obtained under the optimized parameters of the transesterification (KOH 0.50% w/w, 6:1 methanol to oil, at 32 °C for 60 min). The properties of the produced biodiesel were found to conform with the ASTM standard, indicating its suitability for internal combustion engines. Blending of the produced biodiesel with petro diesel with various volume percentages was investigated as well.  相似文献   

4.
Biodiesel was developed from an unconventional feedstock, i.e. an equivalent blend of castor bean and waste chicken oil through the alkaline-catalyzed transesterification with methanol. The process variables including the alkaline catalyst concentration, methanol to oil molar ratio, reaction temperature, reaction time, and the alkaline catalyst type were investigated. The highest yield of biodiesel (97.20 % ~ 96.98 % w/w ester content) was obtained under optimum conditions of 0.75 % w/w of oil, 8:1 methanol to oil molar ratio, 60°C temperature, and a duration of 30 min. Properties of the produced biodiesel satisfied those specified by the ASTM standards. The results thus indicated that the suggested blend oils are suitable feedstock for the production of biodiesel. The process was found to follow pseudo first-order kinetics, and the activation energy was found to be 8.85 KJ/mole.  相似文献   

5.
Crude Pongamia pinnata oil was subjected to a transesterification reaction with a calcium methoxide (Ca(OCH3)2) catalyst in subcritical methanol to obtain biodiesel. The variables affecting the methyl ester conversion were investigated. The obtained results were compared with non-catalyst and two-step reaction runs. The test results showed that the catalyst could improve the methyl ester conversion of biodiesel in subcritical methanol. A conversion rate of 99.50% was achieved with a 50:1 methanol-to-oil molar ratio, 1.0 %wt catalyst, and 2.0 h reaction time at 175°C. In addition, the important fuel properties of the biodiesel satisfied the biodiesel standards.  相似文献   

6.
Camelina oil is a low-cost feedstock for biodiesel production that has received a great deal of attention in recent years. This paper describes an optimization study on the production of biodiesel from camelina seed oil using alkaline transesterification. The optimization was based on sixteen well-planned orthogonal experiments (OA16 matrix). Four main process conditions in the transesterification reaction for obtaining the maximum biodiesel production yield (i.e. methanol quantity, reaction time, reaction temperature and catalyst concentration) were investigated. It was found that the order of significant factors for biodiesel production is catalyst concentration > reaction time > reaction temperature > methanol to oil ratio. Based on the results of the range analysis and analysis of variance (ANOVA), the maximum biodiesel yield was found at a molar ratio of methanol to oil of 8:1, a reaction time of 70 min, a reaction temperature of 50 °C, and a catalyst concentration of 1 wt.%. The product and FAME yields of biodiesel under optimal conditions reached 95.8% and 98.4%, respectively. The properties of the optimized biodiesel, including density, kinematic viscosity, acid value, etc., were determined and compared with those produced from other oil feedstocks. The optimized biodiesel from camelina oil meets the relevant ASTM D6571 and EN 14214 biodiesel standards and can be used as a qualified fuel for diesel engines.  相似文献   

7.
The present work illustrates the parametric effects on biodiesel production from Hevea brasiliensis oil (HBO) using flamboyant pods derived carbonaceous heterogeneous catalyst. Activated carbon (AC) was prepared maintaining 500 °C for 1 h and steam activated at optimised values of activation time 1.5 h and temperature 350 °C. Carbonaceous support was impregnated with KOH at different AC/KOH ratios. The transesterification process was optimized and significant parameters affecting the biodiesel yield was identified by Taguchi method considering four parameters viz. reaction time, reaction temperature, methanol to oil ratio and catalyst loading. The physicochemical properties of Hevea brasiliensis methyl ester (HBME) were examined experimentally at optimised condition and found to meet the global American standards for testing and materials (ASTM). The optimum condition observed to yield 89.81% of biodiesel were: reaction time 60 min, reaction temperature 55 °C, catalyst loading 3.5wt% and methanol to oil ratio 15:1. Contribution factor revealed that among four parameters considered, catalyst loading and methanol to oil ratio have more prominent effect on biodiesel yield. The cost for preparing carbonaceous catalyst support was estimated and observed to be fairly impressive. Thus, Hevea brasiliensis oil (HBO) could be considered as suitable feedstock and flamboyant pods derived carbon as effective catalyst for production of biodiesel.  相似文献   

8.
The optimum conditions for biodiesel production by the transesterification of waste oil form the pork grilling process in the food factory in Udon Thani, Thailand, using NaOH and KOH as catalysts, has been investigated. A Box–Behnken Design (BBD) followed by a Response Surface Methodology (RSM) with 30 runs was used to assess the significance of three factors: the methanol to oil molar ratio, the amount of NaOH and KOH used, and the reaction time required to achieve the optimum percent fatty acid methyl ester (%FAME). The measured %FAME following transesterification using NaOH as a catalyst was an optimum 95.6% with a methanol to oil molar ratio of 12.2:1, a NaOH percentage mass fraction of 0.49% and a reaction time of 63 min. Using KOH as a catalyst, the %FAME was an optimum 93.0% with a methanol to oil molar ratio of 12:1, a KOH percentage mass fraction of 0.61% and a reaction time of 72 min. The coefficient of determination (R2) for regression equations were 98.55% and 93.99%, respectively. The probability value (P<0.05) demonstrated a very good significance for the regression model. The physicochemical properties of the biodiesel obtained from the waste oil met the ASTM 6751 biodiesel standard, illustrating that waste oil from the pork grilling process can be used as a raw material for biodiesel production by transesterification.  相似文献   

9.
Transesterifications of grain of corn oil samples in KOH catalytic and in supercritical methanol were studied without using any catalyst. Biodiesel, an alternative biodegradable diesel fuel, is derived from triglycerides by transesterification with methanol and ethanol. The transesterification reaction is affected by the molar ratio of glycerides to alcohol, catalysts, reaction temperature, reaction time and free fatty acids and water content of oils or fats. It was observed that increasing the reaction temperature, especially to supercritical temperatures, had a favorable influence on methyl ester (biodiesel) conversion. The molar ratio of methanol to corn germ oil is also one of the most important variables affecting the yield of methyl esters. Higher molar ratios result in greater ester production in a shorter time. In the transesterification, free fatty acids and water always produce negative effects, since the presence of free fatty acids and water causes soap formation, consumes catalysts, and reduces catalyst effectiveness, all of which result in a low conversion.  相似文献   

10.
Biodiesel was developed from a novel nonedible oil source, namely Cyprinus carpio fish oil. The acid value of fish oil was very low (0.70 mg KOH/g oil, 0.35 free fatty acid content). As a result, biodiesel was produced through a one-step transesterifcation process, i.e. alkali-catalyzed transesterification with methanol. The optimal conditions for producing biodiesel from fish oil were investigated. The highest biodiesel yield (97.22% ~ 96.88% w/w ester content) was obtained under optimum conditions of 0.75% KOH w/w, 7:1 methanol to oil molar ratio, 60°C reaction temperature and 60-minute duration. Properties of the produced biodiesel as well as its blends with petro-diesel fulfilled the standard limits as prescribed by ASTM D6751 and EN 14214 indicating its suitability as a fuel for diesel engines.  相似文献   

11.
Heterogeneous transesterification of waste cooking palm oil (WCPO) to biodiesel over Sr/ZrO2 catalyst and the optimization of the process have been investigated. Response surface methodology (RSM) was employed to study the relationships of methanol to oil molar ratio, catalyst loading, reaction time, and reaction temperature on methyl ester yield and free fatty acid conversion. The experiments were designed using central composite by applying 24 full factorial designs with two centre points. Transesterification of WCPO produced 79.7% maximum methyl ester yield at the optimum methanol to oil molar ratio = 29:1, catalyst loading = 2.7 wt%, reaction time = 87 min and reaction temperature = 115.5 °C.  相似文献   

12.
The production of ethyl ester from a feed material of esterified crude palm oil with 1.7 wt% of free fatty acid (FFA) content using microwave heating was investigated. Parametric studies were carried out to investigate the optimum conditions for the transesterification process (amount of ethanol, amount of catalyst and reaction time). As a result, optimum reaction parameters for the transesterification process aided by microwave heating have been identified: a molar ratio of oil to ethanol of 1:8.5, 1.5 wt% of KOH/oil, a reaction time of 5 min and a microwave power of 70 W. Glycerin from the ester phase was separated by adding 10 wt% of pure glycerin. The ethyl ester was purified with 1.2 wt% of bleaching earth to remove the residual catalyst and residual glycerin. This transesterification process provided a yield of 85 wt% with an ester content of 98.1 wt%. The final ethyl ester product met the specifications stipulated by ASTM D6751-02.  相似文献   

13.
In the present work the production of biodiesel using bitter almond oil (BAO) in a potassium hydroxide catalyzed transesterification reaction was investigated. The BAO was obtained from resources available in Iran and its physical and chemical properties including iodine value, acid value, density, kinematic viscosity, fatty acid composition and mean molecular weight were specified. The low acid value of BAO (0.24 mg KOH/g) indicated that the pretreatment of raw oil with acid was not required. The fatty acid content analysis confirmed that the contribution of unsaturated fatty acids in the BAO is high (84.7 wt.%). Effect of different parameters including methanol to oil molar ratio (3–11 mol/mol), potassium hydroxide concentration (0.1–1.7% w/w) and reaction temperature (30–70 °C) on the production of biodiesel were investigated. The results indicated that these parameters were important factors affecting the tranesterification reaction. The fuel properties of biodiesel including iodine value, acid value, density, kinematic viscosity, saponification value, cetane number, flash point, cloud point, pour point and distillation characteristics were measured. The properties were compared with those of petroleum diesel, EN 14214 and ASTM 6751 biodiesel standards and an acceptable agreement was observed.  相似文献   

14.
The utilization of non-edible feedstock such as moringa oleifera for biodiesel production attracts much attention owing to the issue with regards to avoiding a threat to food supplies. In this study, the optimization of biodiesel production parameters for moringa oleifera oil was carried out. The free fatty acid value of moringa oil was found to be 0.6%, rendering the one step alkaline transesterification method for converting moringa fatty acids to their methyl esters possible. The optimum production parameters: catalyst amount, alcohol amount, temperature, agitation speed and reaction time were determined experimentally and found to be: 1.0 wt% catalyst amount, 30 wt% methanol amount, 60 °C reaction temperature, 400 rpm agitation rate and 60 min reaction time. With these optimal conditions the conversion efficiency was 82%. The properties of the moringa biodiesel that was produced were observed to fall within the recommended international biodiesel standards. However, moringa biodiesel showed high values of cloud and pour points of 10 °C and 3 °C respectively, which present a problem as regards use in cold temperatures.  相似文献   

15.
The aim of this research is to present the possibilities of the use of non-edible oils in biodiesel production, to consider the various methods for treatment of non-edible oils and to emphasise the influence of the operating and reaction conditions on the process rate and the ester yield. Because of biodegradability and non-toxicity biodiesel has become more attractive as alternative fuel. Biodiesel is produced mainly from vegetable oils by transesterification. For economic and social reasons, edible oils should be replaced by lower-cost and reliable feedstock for biodiesel production, such as non-edible plant oils. In this work biodiesel is produced from neem and Karanja by using butanol, propanol, ethanol and methanol as alcohols and KOH and NaOH as alkali catalysts by the transesterification process. The aim of this research is to analyse the different reaction parameters such as catalyst concentration, type of catalyst, types of alcohol, alcohol to oil molar ratio, reaction time and reaction temperature on the yield of biodiesel from non-edible oils. The maximum yield obtained was 95% with Karanja as oil with methanol and KOH as alkali catalyst at oil to alcohol molar ratio of 6:1 in 1 h at 60°C. Special attention is paid to the possibilities of producing biodiesel from non-edible oils.  相似文献   

16.
Biodiesel was prepared from the crude oil of Simarouba glauca by transesterification with methanol in the presence of KOH as a catalyst. The reaction parameters such as catalyst concentration, alcohol to oil molar ratio, temperature and rate of mixing were optimised for the production of Simarouba oil methyl ester. The yield of methyl esters from Simarouba oil under the optimal condition was 94–95%. Important fuel properties of methyl esters of Simarouba oil (biodiesel) was compared with ASTM and DIN EN 14214. The viscosity was found to be 4.68 Cst at 40°C and the flashpoint was 165°C.  相似文献   

17.
Response surface methodology (RSM), with central composite rotatable design (CCRD), was used to explore optimum conditions for the transesterification of Moringa oleifera oil. Effects of four variables, reaction temperature (25–65 °C), reaction time (20–90 min), methanol/oil molar ratio (3:1–12:1) and catalyst concentration (0.25–1.25 wt.% KOH) were appraised. The quadratic term of methanol/oil molar ratio, catalyst concentration and reaction time while the interaction terms of methanol/oil molar ratio with reaction temperature and catalyst concentration, reaction time with catalyst concentration exhibited significant effects on the yield of Moringa oil methyl esters (MOMEs)/biodiesel, p < 0.0001 and p < 0.05, respectively. Transesterification under the optimum conditions ascertained presently by RSM: 6.4:1 methanol/oil molar ratio, 0.80% catalyst concentration, 55 °C reaction temperature and 71.08 min reaction time offered 94.30% MOMEs yield. The observed and predicted values of MOMEs yield showed a linear relationship. GLC analysis of MOMEs revealed oleic acid methyl ester, with contribution of 73.22%, as the principal component. Other methyl esters detected were of palmitic, stearic, behenic and arachidic acids. Thermal stability of MOMEs produced was evaluated by thermogravimetric curve. The fuel properties such as density, kinematic viscosity, lubricity, oxidative stability, higher heating value, cetane number and cloud point etc., of MOMEs were found to be within the ASTM D6751 and EN 14214 biodiesel standards.  相似文献   

18.
In the present work the production of a biodiesel from watermelon seed oil (Citrullus vulgaris) by methanol-induced transesterification using an alkaline catalyst (potassium hydroxide, KOH) has been examined. The influence of the operating variables such as agitation speed, temperature, reaction time, alcohol amount, and catalyst concentration was determined experimentally and found to be 550 rpm agitation rate, 60°C reaction temperature, 55 min reaction time, 20% of methanol, and 13 g of catalysts concentration for 2.5 liters of oil. The yield of biodiesel from the watermelon methyl ester (WME) under optimized conditions is found to be 91%. The properties of biodiesel are measured as per ASTM standards and compared with the base diesel.  相似文献   

19.
The biodiesel (fatty acid methyl esters, FAME) was prepared by transesterification of the mixed oil (soybean oil and rapeseed oil) with sodium hydroxide (NaOH) as catalyst. The effects of mole ratio of methanol to oil, reaction temperature, catalyst amount and reaction time on the yield were studied. In order to decrease the operational temperature, a co-solvent (hexane) was added into the reactants and the conversion efficiency of the reaction was improved. The optimal reaction conditions were obtained by this experiment: methanol/oil mole ratio 5.0:1, reaction temperature 55 °C, catalyst amount 0.8 wt.% and reaction time 2.0 h. Under the optimum conditions, a 94% yield of methyl esters was reached ∼94%. The structure of the biodiesel was characterized by FT-IR spectroscopy. The sulfur content of biodiesel was determined by Inductively Coupled Plasma emission spectrometer (ICP), and the satisfied result was obtained. The properties of obtained biodiesel from mixed oil are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel. Production of biodiesel has positive impact on the utilization of agricultural and forestry products.  相似文献   

20.
The transesterification of palm oil to methyl esters (biodiesel) was studied using KOH loaded on Al2O3 and NaY zeolite supports as heterogeneous catalysts. Reaction parameters such as reaction time, wt% KOH loading, molar ratio of oil to methanol, and amount of catalyst were optimized for the production of biodiesel. The 25 wt% KOH/Al2O3 and 10 wt% KOH/NaY catalysts are suggested here to be the best formula due to their biodiesel yield of 91.07% at temperatures below 70 °C within 2–3 h at a 1:15 molar ratio of palm oil to methanol and a catalyst amount of 3–6 wt%. The leaching of potassium species in both spent catalysts was observed. The amount of leached potassium species of the KOH/Al2O3 was somewhat higher compared to that of the KOH/NaY catalyst. The prepared catalysts were characterized by using several techniques such as XRD, BET, TPD, and XRF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号