首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional energy usage has various environmental effects that cause global warming. Renewable energy sources are thus more favorable because they have nearly zero emission. Wind energy, among the various renewable sources, finds increasing usage, concurrent with developing technology. In addition, wind is an infinite energy source. In this study, the electricity-generation ability of Kutahya has been investigated. With this aim, wind data, from the measurement station located on Bunelek Hill, Kutahya, have been collected for a period of 36 months (July 2001–June 2004). From the collected data, the electricity generated has been calculated for different types of wind turbines. The calculations have been based on the electricity requirement of the main campus of the Dumlupinar University. Finally, the economic evaluation has been analyzed using life-cycle cost analysis. For the analysis of the economical aspects, the social and CO2 costs have also been taken into account.  相似文献   

2.
Turkey has remarkable wind energy potential, but its utilisation rate is very low. However, in 2007, energy investors applied to the Energy Market Regulatory Authority (EMRA) with 751 wind projects to obtain a 78180.2 MW wind power plant license. This paper first presents an overview of wind energy development in the world and then reviews related situations in Turkey. Second, to motivate the interest in wind energy investment, new wind power plant license applications in Turkey are analysed. Finally, wind electricity generation cost analyses were performed at 14 locations in Turkey. Capacity factors of investigated locations were calculated between 19.7% and 56.8%, and the production cost of electrical energy was between 1.73 and 4.99 $cent/kW h for two different wind shear coefficients.  相似文献   

3.
Utilization of wind energy as an energy source has been growing rapidly in the whole world due to environmental pollution, consumption of the limited fossil fuels and global warming. Although Turkey has fairly high wind energy potential, exploitation of the wind energy is still in the crawling level. In the current study, wind characteristics and wind energy potential of Kırklareli province in the Marmara Region, Turkey were analyzed taking into account the wind data measured as hourly time series. The wind data used in the study were taken from Electrical Power Resources Survey and Development Administration (EIEI) for the year 2004. The measured wind data were processed as annual, seasonal and monthly. Weibull and Rayleigh probability density functions of the location are calculated in the light of observed data and Weibull shape parameter k and scale parameter c are found as 1.75 and 5.25 m/s for the year 2004. According to the power calculations done for the site, annual mean power density based on Weibull function is 138.85 W/m2. The results indicate that investigated site has fairly wind energy potential for the utilization.  相似文献   

4.
The negative effects of non-renewable fossil fuels have forced scientists to draw attention to clean energy sources which are both environmentally more suitable and renewable. Although Turkey enjoys fairly high wind energy potential, an investigation and exploitation of this source is still below the desired level. In this study which is a preliminary study on wind energy cost in Central Anatolian-Turkey, the wind energy production using time-series approach and the economic evaluation of various wind energy conversion systems (WECSs) enjoying the 2.5, 5, 10, 20, 30, 50, 100 and 150 kW rated power size using the levelised cost of electricity (LCOE) method for the seven different locations in Central Turkey were estimated. In addition, effects of escalation ratio of operation and maintenance cost and annual mean speed on LCOE are taken into account. The wind speed data for a period between 2000 and 2006 years were taken from Turkish State Meteorological Service (TSMS). According to the result of the calculations, it is shown that the WECS of capacity 150 kW produce the energy output 120,978 kWh per year in the Case-A (Pinarbasi) for hub height 30 m and also the LCOE varies in the range of 0.29–30.0 $/kWh for all WECS considered.  相似文献   

5.
Wind data from 10 coastal meteorological stations along the Mediterranean Sea in Egypt have been used for statistical analysis to determine the wind characteristics. It was found that three stations show annual mean wind speed greater than 5.0 m/s. In order to identify the Weibull parameters for all stations two different methods were applied.The methodical analysis for all stations was done for the corrected monthly and annual mean wind power at a height of 10 m, over roughness class 0 (water). The recommended correlation equation was also stated for Mediterranean Sea zone in Egypt. Also the wind power densities for heights of 30–50 m were calculated for all stations. Three of them are the best locations, namely: Sidi Barrani, Mersa Matruh, and El Dabaa, where these contiguous stations have great abundantly wind energy density.A technical assessment has been made of the electricity generation using WASP program for two commercial turbines (300 kW and 1 MW) considering at the three promising sites. The wind turbine of capacity 1 MW was found to produce an energy output per year of 2718 MW h at El Dabaa station, and the production costs was found 2€ cent/kW h.  相似文献   

6.
In this study, the potential of wind energy and assessment of wind energy systems in Turkey were studied. The main purpose of this study is to investigate the wind energy potential and future wind conversion systems project in Turkey. The wind energy potential of various regions was investigated; and the exploitation of the wind energy in Turkey was discussed. Various regions were analyzed taking into account the wind data measured as hourly time series in the windy locations. The wind data used in this study were taken from Electrical Power Resources Survey and Development Administration (EIEI) for the year 2010. This paper reviews the assessment of wind energy in Turkey as of the end of May 2010 including wind energy applications. Turkey's total theoretically available potential for wind power is around 131,756.40 MW and sea wind power 17,393.20 MW annually, according to TUREB (TWEA). When Turkey has 1.5 MW nominal installed wind energy capacity in 1998, then this capacity has increased to 1522.20 MW in 2010. Wind power plant with a total capacity of 1522.20 MW will be commissioned 2166.65 MW in December 2011.  相似文献   

7.
The wind characteristics of 11 sites in the windy regions in Morocco have been analysed. The annual average wind speed for the considered sites ranged from 5 m/s to 10 m/s and the average power density from 100 W/m2 to 1000 W/m2, which might be suitable for electrical power production by installing wind farms. On an annual scale the observations of the distribution of hourly wind speed are better fitted by the Weibull hybrid distribution in contrast to the Weibull distribution.The wind power is estimated to be 1817 MW, that is to say, the exploitable wind energy is 15198 GWh, which represents theoretically 11% of the total consumed energy in Morocco in 1994.  相似文献   

8.
Turkey is one of the developing countries. The production of electricity in Turkey is basically focused on hydro-power and thermal-power. On the other hand, measurements show that Turkey has a reasonable wind potential but this potential was not being used for many years due to government policies which supported the use of petroleum, coal, and hydro power as energy sources. In recent years there is an increasing interest in using wind energy as one of the energy sources. This paper briefly introduces a study of the determination of wind power potential of Nurda ı/Gaziantep district where is on the south of Turkey for future wind power generation projects. Evaluation of wind data; taken by Turkish Electrical Power Resources Development Administration at the foot of the mountain, Nurda ı, shows that the district has a mean wind speed of 7.3 m/s at 10 m height and observed highest value wind speed is 23.3 m/s. Mean power density of the site is found as 222 W/m2 and the results suggest that the site encourages investors especially since the terrain is a grassy plain on the side of the mountain and the measurements are taken at 10 m height.  相似文献   

9.
This paper statistically examine wind characteristics from seven meteorological stations within the North-West (NW) geo-political region of Nigeria using 36-year (1971–2007) wind speed data measured at 10 m height subjected to 2-parameter Weibull analysis. It is observed that the monthly mean wind speed in this region ranges from 2.64 m/s to 9.83 m/s. The minimum monthly mean wind speed was recorded in Yelwa in the month of November while the maximum value is observed in Katsina in the month of June. The annual wind speeds range from 3.61 m/s in Yelwa to 7.77 m/s in Kano. It is further shown that Sokoto, Katsina and Kano are suitable locations for wind turbine installations with annual mean wind speeds of 7.61, 7.45 and 7.77 m/s, respectively. The results also suggest that Gusau and Zaria should be applicable for wind energy development using taller wind turbine towers due to their respective annual mean speeds and mean power density while Kaduna is considered as marginal. In addition, higher wind speeds were recorded in the morning hours than afternoon periods for this region. A technical electricity generation assessment using four commercial wind turbines were carried out. The results indicate that, while the highest annual power is obtained with Nordex N80–2.5 MW as 14233.53 kW/year in Kano, the lowest is in Yelwa having 618.06 kW/year for Suzlon S52. It is further shown that the highest capacity factor is 64.95% for Suzlon S52–600 kW in Kano while the lowest is 3.82% for Vestas V80–2 MW in Yelwa.  相似文献   

10.
The wind characteristics of six locations in the State of Kuwait have been assessed. The annual average wind speed for the considered sites ranged from 3.7 to 5.5 m/s and a mean wind power density from 80 to 167 W/m2 at standard height of 10 m. The Weibull parameters and power density of each station have been determined using Weibull distribution. The wind data at heights 15, 20, 25 and 30 m were obtained by extrapolation of the 10 m data using the Power-Law. The potential wind energy at different heights was estimated using Weibull parameters. Maximum power density is found at 30 m height which varies between 130 and 275 W/m2 with 70% increase from the standard height indicating fairly potential wind energy especially in the northern part of the country. The highest potential wind power was found during the summer season which is the peak demand season of electricity in Kuwait.  相似文献   

11.
Wind characteristics and wind turbine characteristics in Taiwan have been thoughtfully analyzed based on a long-term measured data source (1961–1999) of hourly mean wind speed at 25 meteorological stations across Taiwan. A two-stage procedure for estimating wind resource is proposed. The yearly wind speed distribution and wind power density for the entire Taiwan is firstly evaluated to provide annually spatial mean information of wind energy potential. A mathematical formulation using a two-parameter Weibull wind speed distribution is further established to estimate the wind energy generated by an ideal turbine and the monthly actual wind energy generated by a wind turbine operated at cubic relation of power between cut-in and rated wind speed and constant power between rated and cut-out wind speed. Three types of wind turbine characteristics (the availability factor, the capacity factor and the wind turbine efficiency) are emphasized. The monthly wind characteristics and monthly wind turbine characteristics for four meteorological stations with high winds are investigated and compared with each other as well. The results show the general availability of wind energy potential across Taiwan.  相似文献   

12.
Wind measurements are generally performed below wind turbine hub heights due to higher measurement and tower costs. In order to obtain the wind speed at the hub height of the turbine, the measurements are extrapolated, assuming that the wind shear is constant. This assumption may result in some critical errors between the estimated and actual energy outputs. In this paper wind data collected in Bal?kesir from October 2008 to September 2009, has been used to show the effects of wind shear coefficient on energy production. Results of the study showed that, the difference between wind energy production using extrapolated wind data and energy production using measured wind data at hub height may be up to 49.6%.  相似文献   

13.
In this work, a statistical analysis of wind energy potential in Maiduguri is carried out, using Weibull distribution and 10 years (1995–2004) of wind data. The results show the Weibull distribution parameter C and K, the probability function T (V), the velocity frequency distribution f (V), the energy and power densities. The cost benefit analysis shows the economic feasibility of using wind energy conversion systems for electric power generation and supply in Maiduguri.  相似文献   

14.
Nevzat Onat  Sedat Ersoz 《Energy》2011,36(1):148-156
Investments in wind plants have increased rapidly as a result of changes to legal regulations in Turkey over the last five years. This has also led to an increase in the number of wind potential analyses in various regions of the country. This study analyzes the wind climate features of three regions in Turkey and their energy potential. In order to determine the features of wind in these regions, a five-layer Sugeno-type ANFIS model established under the MATLAB-Simulink software was used and the relationship between wind speed and other climate variables determined. In the second phase, WASP software was used to complete the wind energy potential analyses using wind speed data. The final phase includes calculations of the amount of electricity to be obtained technically and capacity usage rates of the installed turbines if wind farms are established in the selected areas. The comparative tables and graphics of the said areas were obtained. In conclusion, the selected areas are well located for the installation of parallel-connected wind plants to the national network in terms of the reliability of wind, the dispersion of wind potential and capacity usage rates.  相似文献   

15.
In this study, the measured wind speed data for year 2007 at 10 m, 30 m and 40 m heights for two provinces of Iran, North and South Khorasan, have been statistically analyzed to determine the potential of wind power generation. This paper presents the wind energy potential at four zones in these provinces, Bojnourd, Esfarayen of North Khorasan province and Nehbandan, and Fadashk of South Khorasan province. The objective is to evaluate the most important characteristic of wind energy in the studied sites. The statistical attitudes permit us to estimate the mean wind speed, the wind speed distribution function, the mean wind power density in the sites at the height of 10 m, 30 m and 40 m. Also, three new types of wind rose diagrams were shown.  相似文献   

16.
This paper deals with the analysis and comparison of 7 (seven) numerical methods for the assessment of effectiveness in determining the parameters for the Weibull distribution, using wind speed data collected in Camocim and Paracuru cities, State of Ceará, in the northeast region of Brazil, in the period from August 2004 to April 2006, obtained by the Department of Infrastructure of the State of Ceará. One method is not well known, namely the equivalent energy method, and its performance is compared to the others. By using the methods of analysis of variance, RMSE (root mean square error), and chi-square tests to compare the proposed methods, this study aims to determine which ones are effective in determining the parameters of the Weibull distribution for the available data, in an attempt to establish acceptable criteria to a better utilization of wind power in the State of Ceará, which is a national prominence in the use of renewable sources for electricity generation in Brazil.  相似文献   

17.
The aim of this study is to establish the potential and the feasibility basis for the wind energy resources in some locations of East Mediterranean region of Turkey and provide suitable data for evaluating the potential wind power. For this purpose, hourly wind data, which were observed between the years 1997 and 2001 at the meteorological stations of Antakya and skenderun regions, were used. The dominant wind directions, the mean values, wind speeds, wind potential and the frequency distributions were determined. The results were classified according to the height above the ground level. Finally, the wind atlas of these regions in the form of contours of constant wind speed and wind potential was produced.  相似文献   

18.
M.R. Islam  R. Saidur  N.A. Rahim 《Energy》2011,36(2):985-992
The wind resource is a crucial step in planning a wind energy project and detailed knowledge of the wind characteristic at a site is needed to estimate the performance of a wind energy project. In this paper, with the help of 2-parameter Weibull distribution, the assessment of wind energy potentiality at Kudat and Labuan in 2006-2008 was carried out. “WRPLOT” software has been used to show the wind direction and resultant of the wind speed direction. The monthly and yearly highest mean wind speeds were 4.76 m/s at Kudat and 3.39 m/s at Labuan respectively. The annual highest values of the Weibull shape parameter (k) and scale parameter (c) were 1.86 and 3.81 m/s respectively. The maximum wind power density was found to be 67.40 W/m2 at Kudat for the year 2008. The maximum wind energy density was found to be 590.40 kWh/m2/year at Kudat in 2008. The highest most probable wind speed and wind speed carrying maximum energy were estimated 2.44 m/s at Labuan in 2007 and 6.02 m/s at Kudat in 2007. The maximum deviation, at wind speed more than 2 m/s, between observed and Weibull frequency distribution was about 5%. The most probable wind directions (blowing from) were 190° and 269° at Kudat and Labuan through the study years. From this study, it is concluded that these sites are unsuitable for the large-scale wind energy generation. However, small-scale wind energy can be generated at the turbine height of 100 m.  相似文献   

19.
W. Krewitt  J. Nitsch 《Renewable Energy》2003,28(10):1645-1655
In spite of the well-acknowledged environmental benefits of electricity generation from wind energy, there is increasing concern about impacts from wind turbines on local ecosystems and on the natural scenery. A GIS-based approach is developed to analyse the effect of different nature conservation criteria on the wind energy potential in quantitative terms. Results for two case study regions in Germany, representing a coastal area with quite good wind conditions and an inland region with limited wind resources, illustrate to which extent the ban of wind turbines in, for example, landscape conservation areas, special bird protection areas, or areas with high visual sensitivity reduces the potential for electricity generation from wind energy. We conclude that even under strict nature conservation constraints there is still a large potential for on-shore wind energy use that can be used to establish a sustainable electricity supply in Germany.  相似文献   

20.
J.K. Kaldellis   《Renewable Energy》2008,33(7):1665-1677
According to long-term wind speed measurements the Aegean Archipelago possesses excellent wind potential, hence properly designed wind energy applications can substantially contribute to fulfill the energy requirements of the island societies. On top of this, in most islands the electricity production cost is extremely high, while significant insufficient power supply problems are often encountered, especially during the summer. Unfortunately, the stochastic behaviour of the wind and the important fluctuations of daily and seasonal electricity load pose a strict penetration limit for the contribution of wind energy in the corresponding load demand. The application of this limit is necessary in order to avoid hazardous electricity grid fluctuations and to protect the existing thermal power units from operating near or below their technical minima. In this context, the main target of the proposed study is to present an integrated methodology able to estimate the maximum wind energy penetration in autonomous electrical grids on the basis of the available wind potential existing in the Aegean Archipelago area. For this purpose a large number of representative wind potential types have been investigated and interesting conclusions have been derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号