首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shiv Kumar  G.N. Tiwari 《Solar Energy》2009,83(9):1656-110
In this paper, an attempt is made to estimate the internal heat transfer coefficients of a deep basin hybrid (PV/T) active solar still. The estimation is based on outdoor experimental observation of hybrid (PV/T) solar still for composite climate of New Delhi (latitude 28°35′N and longitude 77°12′E). The internal heat transfer coefficients are evaluated by using thermal models proposed by various researchers. The comparison of hourly yield predicted using various thermal models to the experimental has also been carried out by evaluating the correlation coefficient and percentage deviation. It is observed that, Kumar and Tiwari model (KTM) better validate the results than the others model. The average annual values of convective heat transfer coefficient for the passive and hybrid (PV/T) active solar still are observed as 0.78 and 2.41 W m−2 K−1, respectively at 0.05 m water depth.  相似文献   

2.
In this communication, an experimental study of inverted absorber solar still (IASS) and single slope solar still (SS) at different water depth and total dissolved solid (TDS) is presented. Experiments are conducted for the climatic condition of Muscat, Oman. A thermal model is also developed for the IASS and validated with experimental results. A fair agreement is found for the daytime operation of the IASS. It is observed that higher water temperature can be achieved by using the IASS in comparison to the SS. The daily yield obtained from the IASS are 6.302, 5.576 and 4.299 kg/m2-day at water depths (dw) 0.01, 0.02 and 0.03 m respectively. At same respective water depths, the daily yield obtained from the SS are 2.152, 1.931, 0.826 kg/m2-day respectively lower than that of the IASS. It is observed that for climatic condition of Muscat, Oman, the optimum water depth for the IASS is 0.03 m above which the addition of reflector under the basin does not affect its performance much more in comparison to that of the SS for sea water. The feed saline water and yielded distilled water are also compared for different TDS values, pH, and electrical conductance. On the basis of economic analysis of IASS, it is found that the annualized cost of distilled water in Indian rupees for Muscat climatic condition is Rs. 0.74, 0.66 and 0.62 (conversion factors: $ 1 = Rs. 50 and 1 OMR = Rs. 120) for the life time of 15, 20 and 25 years respectively.  相似文献   

3.
The aim of this paper is to optimize the number of collectors for PV/T hybrid active solar still. The number of PV/T collectors connected in series has been integrated with the basin of solar still. The optimization of number of collectors for different heat capacity of water has been carried out on the basis of energy and exergy. Expressions of inner glass, outer glass and water temperature have been derived for the hybrid active solar system. For the numerical computations data of a summer day (May 22, 2008) for Delhi climatic condition have been used. It has been observed that with increase of the mass of water in the basin increases the optimum number of collector. However the daily and exergy efficiency decreases linearly and nonlinearly with increase of water mass. It has been observed that the maximum yield occurs at N = 4 for 50 kg of water mass on the basis of exergy efficiency. The thermal model has also been experimentally validated.  相似文献   

4.
The Net Zero Energy House (NZEH) presented in this paper is an energy efficient house that uses available solar technologies to generate at least as much primary energy as the house uses over the course of the year. The computer simulation results show that it is technically feasible to reach the goal of NZEH in the cold climate of Montreal. In terms of the life cycle energy use, which considers the operating and embodied energy of the house, the energy payback time is 8.4–8.7 years, when the NZEH is compared with an average house that complies with the provincial code. The energy payback ratio of the combisystem is 3.5–3.8 compared with the heating system of conventional house. By converting solar energy, the combisystem supplies at least 3.5 times more energy than the energy invested for manufacturing and shipping the system. The life cycle cost analysis of the NZEH shows, however, that due to the high cost of the solar technologies and the low cost of electricity in Montreal, financial payback is never achieved.  相似文献   

5.
This paper reports the investigation results of the energy payback time (EPBT) and greenhouse-gas payback time (GPBT) of a rooftop BIPV system (grid-connected) in Hong Kong to measure its sustainability. The 22 kWp PV array is facing south with inclined angle of 22.5°. The hourly solar irradiance and ambient air temperature from 1996 to 2000 were used as weather data input. The annual power output was found to be 28,154 kWh. The embodied energy for the whole system in the lifespan was 205,816 kWh, including 71% from PV modules and 29% from balance of system (BOS). The percentage of embodied energy for silicon purification and processing reached 46%. The EPBT of the PV system was 7.3 years, and the GPBT was estimated to be 5.2 years considering fuel mixture composition of local power stations. This paper also discussed the EPBTs for different orientations, ranging from 7.1 years (optimal orientation) to 20.0 years (west-facing vertical PV façade). The results show that the ‘sustainability’ of a PV system is affected by its installation orientation and location. Choosing locations and orientations with higher incident solar irradiance is one key for the sustainability of BIPV technology applications.  相似文献   

6.
This paper presents rigorous experimental outdoor performance of a 2.32 kWP stand-alone photovoltaic (SAPV) system in New Delhi (India) for four weather types in each month such as clear, hazy, partially cloudy/foggy and fully cloudy/foggy weather conditions respectively. The daily power generated from the existing SAPV system was experimentally found in the range of 4–6 kW h/day depending on the prevailing sky conditions. The number of days and daily power generated corresponding to four weather types in each month were used to determine monthly and subsequently annual power generation from the existing SAPV system. There are three daily load profiles with and without earth to air heat exchanger suitable for three seasons like summer (3.75–6.15 kW h/day), winter (2.79–5.19 kW h/day) and rainy (3.75 kW h/day). The hourly efficiency of the SAPV system components are determined and presented in this paper. The life cycle cost (LCC) analysis for the existing typical SAPV system is carried out to determine unit cost of electricity. The effect of annual degradation rate of PV system efficiency is also presented in this paper. The energy production factor (EPF) and the energy payback time (EPBT) of the SAPV system was also determined and presented in this paper.  相似文献   

7.
A feasibility study and techno-economic analysis for a hybrid power system intended for vehicular traction applications has been performed. The hybrid consists of an intermediate temperature solid oxide fuel cell (IT-SOFC) operating at 500–800 °C and a sodium–nickel chloride (ZEBRA) battery operating at 300 °C. Such a hybrid system has the benefits of extended range and fuel flexibility (due to the IT-SOFC), high power output and rapid response time (due to the battery). The above hybrid has been compared to a fuel cell-only, a battery-only and an ICE vehicle. It is shown that the capital cost associated with a fuel cell-only vehicle is still much higher than that of any other power source option and that a battery-only option would potentially encounter weight and volume limitations, particularly for long drive times. It is concluded that increasing drive time per day decreases substantially the payback time in relation to an ICE vehicle running on gasoline and thus that the hybrid vehicle is an economically attractive option for commercial vehicles with long drive times. In the case where the battery has reached volume production prices at £70 kWh−1 and current fuel duty values remain unchanged then a payback time <2 years is obtained. For a light delivery van operating with 6 h drive time per day, a fuel cell system model predicted a gasoline equivalent fuel economy of 25.1 km L−1, almost twice that of a gasoline fuelled ICE vehicle of the same size, and CO2 emissions of 71.6 g km−1, well below any new technology target set so far. It is therefore recommended that a SOFC/ZEBRA demonstration be built to further explore its viability.  相似文献   

8.
A hybrid system, composed of a photovoltaic (PV) module and a solar thermal collector is constructed and tested for energy collection at a geographic location of Cyprus. Normally, it is required to install a PV system occupying an area of about 10 m2 in order to produce electrical energy; 7 kWh/day, required by a typical household. In this experimental study, we used only two PV modules of area approximately 0.6 m2 (i.e., 1.3×0.47 m2) each. PV modules absorb a considerable amount of solar radiation that generate undesirable heat. This thermal energy, however, may be utilized in water pre-heating applications. The proposed hybrid system produces about 2.8 kWh thermal energy daily. Various attachments that are placed over the hybrid modules lead to a total of 11.5% loss in electrical energy generation. This loss, however, represents only 1% of the 7 kWh energy that is consumed by a typical household in northern Cyprus. The pay-back period for the modification is less than 2 years. The low investment cost and the relatively short pay-back period make this hybrid system economically attractive.  相似文献   

9.
In the wake of rising cost of oil and fears of its exhaustion coupled with increased pollution, the governments world-wide are deliberating and making huge strides to promote renewable energy sources such as solar–photovoltaic (solar–PV) and wind energy. Integration of diesel systems with hybrid wind–PV systems is pursued widely to reduce dependence on fossil-fuel produced energy and to reduce the release of carbon gases that cause global climate change. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (KSA) consume an estimated 10–40% of the total electric energy generated. The study reviews research work carried out world-wide on wind farms and solar parks. The work also analyzes wind speed and solar radiation data of East-Coast (Dhahran), KSA, to assess the technical and economic potential of wind farm and solar PV park (hybrid wind–PV–diesel power systems) to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The monthly average daily solar global radiation ranges from 3.61 to 7.96 kWh/m2. The hybrid systems simulated consist of different combinations of 100 kW wind machines, PV panels, supplemented by diesel generators. NREL (and HOMER Energy's) HOMER software has been used to perform the techno-economic study. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity (37 m hub-height) and 40 kW of PV capacity together with 175 kW diesel system, the renewable energy fraction (with 0% annual capacity shortage) is 36% (24% wind + 12% PV). The cost of generating energy (COE, $/kWh) from this hybrid wind–PV–diesel system has been found to be 0.154 $/kWh (assuming diesel fuel price of 0.1$/L). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel generators decreases with increase in wind farm and PV capacity. Attention has also been focused on wind/PV penetration, un-met load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind–PV–diesel systems, COE of different hybrid systems, etc.  相似文献   

10.
In this study, the environmental load of photovoltaic power generation system (PV) during its life cycle and energy payback time (EPT) are evaluated by LCA scheme. Two hypothetical case studies in Toyohashi, Japan and Gobi dessert in China have been carried out to investigate the influence of installation location and PV type on environmental load and EPT. The environmental load and EPT of a high-concentration photovoltaic power generation system (hcpV) and a multi-crystalline silicon photovoltaic power generation system (mc-Si PV) are studied. The study shows for a PV of 100 MW size, the total impacts of the hcpV installed in Toyohashi is larger than that of the hcpV installed in Gobi desert by 5% without consideration of recycling stage. The EPT of the hcpV assumed to be installed in Gobi desert is shorter than EPT of the hcpV assumed to be installed in Toyohashi by 0.64 year. From these results, the superiority to install PV in Gobi desert is certificated. Comparing with hcpV and mc-Si PV, the ratio of the total impacts of mc-Si PV to that of hcpV is 0.34 without consideration of recycling stage. The EPT of hcpV is longer than EPT of mc-Si PV by 0.27 year. The amount of global solar radiation contributing to the amount of power generation of mc-Si PV is larger than the amount of direct solar radiation contributing to the amount of power generation of hcpV by about 188 kW h/(m2 year) in Gobi desert. Consequently, it appears that using mc-Si PV in Gobi desert is the best option.  相似文献   

11.
The employ of thermal insulation is one of the most effective ways of building energy conservation for cooling and heating. Therefore, the selection of a proper insulation material and the determination of optimum insulation thickness are particularly vital. Four typical cities of Shanghai, Changsha, Shaoguan and Chengdu are selected to represent A, B, C and D subzone of hot summer and cold winter zone in China, respectively. The optimum thicknesses of five insulation materials including expanded polystyrene, extruded polystyrene, foamed polyurethane, perlite and foamed polyvinyl chloride are calculated with a typical residential wall using solar-air cooling and heating degree-days analysis and P1P2 economic model. And then, life cycle total costs, life cycle savings and payback periods are calculated based on life cycle cost analysis. Considering different orientations, surface colors, insulation materials and climates, optimum thicknesses of the five insulations vary from 0.053 to 0.236 m, and the payback periods vary from 1.9 to 4.7 years over a lifetime of 20 years. The maximum life cycle savings are 54.4 $/m2 in Shanghai, 54.8 $/m2 in Changsha and 41.5 $/m2 in Shaoguan (with a deep-colored northeast wall), and 39.0 $/m2 in Chengdu (with a light-colored northwest wall). Finally, an approach to analyze economical efficiency of insulation materials is developed, result shows that expanded polystyrene is the most economic insulation material of the five because of the highest life cycle saving and lowest payback period.  相似文献   

12.
For several years, many types of solar powered water pumping systems were evaluated, and in this paper, diaphragm and helical solar photovoltaic (PV) powered water pumping systems are discussed. Data were collected on diaphragm and helical pumps which were powered by different solar PV arrays at multiple pumping depths to determine the pumping performance, efficiency, and reliability of the different systems. The highest diaphragm pump hydraulic efficiency measured was ∼48%, and the highest helical pump hydraulic efficiency measured was ∼60%. The peak total system efficiency (e.g. solar radiation to pumped water) measured for the diaphragm and helical pumps were ∼5% and ∼7%, respectively (based on PV modules with ∼12% efficiency). The daily water volume of the three-chamber high head diaphragm pump performed better than the dual-chamber high head diaphragm pump (∼5 to ∼100% depending on PV array input power and pumping depth). Use of a controller was shown to improve the quad diaphragm pump performance below a solar irradiance of 600 W/m2 (20 m head) to 800 W/m2 (30 m head). While diaphragm pumps made mostly of plastic demonstrated similar to much better pumping performance than diaphragm pumps made with a high proportion of metal, the metal pumps demonstrated a longer service life (>2 years) than the plastic pumps service life (<2 years). Helical pumps analyzed in this paper were capable of deeper pumping depths and usually demonstrated a longer service life than the diaphragm pumps that were analyzed.  相似文献   

13.
The Australian Government ran a renewable energy program in the 2000s that provided rebates to householders who acquired solar Photovoltaic (PV) energy systems. Originally called the Photovoltaic Rebate Program (PVRP), it was rebranded the Solar Homes and Communities Plan (SHCP) in November 2007. This paper evaluates both the PVRP and SHCP using measures of cost-effectiveness and fairness. It finds that the program was a major driver of a more than six-fold increase in PV generation capacity in the 2000s, albeit off a low base. In 2010, solar PV’s share of the Australian electricity market was still only 0.1%. The program was also environmentally ineffective and costly, reducing emissions by 0.09 MtCO2-e/yr over the life of the rebated PV systems at an average cost of between AU$238 and AU$282/tCO2-e. In addition, the data suggest there were equity issues associated with the program, with 66% of all successful applicants residing in postal areas that were rated as medium–high or high on a Socio-economic Status (SES) scale.  相似文献   

14.
In this paper, the development and testing of a new type of efficient solar dryer, particularly meant for drying vegetables and fruit, is described. The dryer has two compartments: one for collecting solar radiation and producing thermal energy and the other for spreading the product to be dried. This arrangement was made to absorb maximum solar radiation by the absorber plate. In this dryer, the product was loaded beneath the absorber plate, which prevented the problem of discoloration due to irradiation by direct sunlight. Two axial flow fans, provided in the air inlet, can accelerate the drying rate. The dryer had six perforated trays for loading the material. The absorber plate of the dryer attained a temperature of 97.2 °C when it was studied under no load conditions. The maximum air temperature in the dryer, under this condition was 78.1 °C. The dryer was loaded with 4 kg of bitter gourd having an initial moisture content of 95%, and the final desired moisture content of 5% was achieved within 6 h without losing the product colour, while it was 11 h for open sun drying. The collector glazing was inclined at a particular angle, suitable to the location, for absorption of maximum solar radiation. A detailed performance analysis was done by three methods, namely ‘annualized cost method’, ‘present worth of annual savings’ and ‘present worth of cumulative savings’. The drying cost for 1 kg of bitter gourd was calculated as Rs. 17.52, and it was Rs. 41.35, in the case of an electric dryer. The life span of the solar dryer was assumed to be 20 years. The cumulative present worth of annual savings over the life of the solar dryer was calculated for bitter gourd drying, and it turned out be Rs. 31659.26, which was much higher than the capital cost of the dryer (Rs. 6500). The payback period was calculated as 3.26 years, which was also very small considering the life of the system (20 years). So, the dryer would dry products free of cost during almost its entire life span. The quality of the product dried in the solar dryer was competitive with the branded products available in the market.  相似文献   

15.
Many companies in India manufacture solar water heaters but these are not becoming popular in the domestic sector because of their high cost. The Ministry of Non-Conventional Energy Sources (MNES), New Delhi is recommending flat-plate collectors with copper (Cu) risers, headers and plate. Therefore, their cost is high. Long term studies have been carried out at the Central Arid Zone Research Institute, Jodhpur, to reduce the cost by replacing copper tubes with galvanised steel (G.S.) tube and copper plate with aluminium (Al) plate. The aluminium plate is wrapped over the G.S. tube by a special wire wound technique so that good contact of plate with risers and headers has been maintained. In this paper performance and testing of solar water heaters having G.S.–Al fin, Cu–Al fin and Cu–Cu fin in flat-plate collectors have been compared. It has been found that performance of all the three heaters is almost similar. The heater can provide 100 litres of hot water at an average temperature 62.0°C at 4 pm that can be retained to 50.4°C when average tap water temperature was 23.9°C. The efficiency of the heater is 51.9%. The cost of the heater with G.S.–Al collector is only Rs. 8,000.00 while it is Rs. 10,250.00 for solar water heaters with Cu–Cu collectors. The payback period of a solar water heater with G.S.–Al collector has been worked out by considering 10% compound annual interest, 5% maintenance cost, 5%, inflation in fuel prices and maintenance cost. The payback period varies between 2.92 years to 4.53 years depending upon which fuel it replaces. The payback periods are in increasing order with respect to fuels: electricity, firewood, LPG, charcoal, and kerosene.  相似文献   

16.
This paper presents a method, implemented as a freely available computer programme, which is used to estimate the economics of renewable microgeneration of electricity from wind and solar energy sources. A variety of commercial small wind turbines and photovoltaic (PV) panels are considered and combined with raw energy data gathered from a variety of locations. Both residential and holiday home user profiles are available and options are selectable concerning feed-in tariffs (if available), government incentive schemes and the cost of capital borrowing. The configuration of the generation setup, which can consist of wind, PV and combination of wind/PV, is fully selectable by the user, with a range of appropriate default data provided. A numerical example, based on Irish data, is presented, which suggests that payback periods for solar and wind microgeneration systems can vary greatly (2.5–500 years), depending on the location, installation and economic variables.  相似文献   

17.
This article presents an overview on the research and development and application aspects for the hybrid photovoltaic/thermal (PV/T) collector systems. A major research and development work on the photovoltaic/thermal (PVT) hybrid technology has been done since last 30 years. Different types of solar thermal collector and new materials for PV cells have been developed for efficient solar energy utilization. The solar energy conversion into electricity and heat with a single device (called hybrid photovoltaic thermal (PV/T) collector) is a good advancement for future energy demand. This review presents the trend of research and development of technological advancement in photovoltaic thermal (PV/T) solar collectors and its useful applications like as solar heating, water desalination, solar greenhouse, solar still, photovoltaic-thermal solar heat pump/air-conditioning system, building integrated photovoltaic/thermal (BIPVT) and solar power co-generation.  相似文献   

18.
The 1 axis-3 position (1A-3P) sun tracking PV was built and tested to measure the daily and long-term power generation of the solar PV system. A comparative test using a fixed PV and a 1A-3P tracking PV was carried out with two identical stand-alone solar-powered LED lighting systems. The field test in the particular days shows that the 1A-3P tracking PV can generate 35.8% more electricity than the fixed PV in a partly-cloudy weather with daily-total solar irradiation HT = 11.7 MJ/m2 day, or 35.6% in clear weather with HT = 18.5 MJ/m2 day. This indicates that the present 1A-3P tracking PV can perform very close to a dual-axis continuous tracking PV (Kacira et al., 2004). The long-term outdoor test results have shown that the increase of daily power generation of 1A-3P tracking PV increases with increasing daily-total solar irradiation. The increase of monthly-total power generation for 1A-3P sun tracking PV is between 18.5-28.0%. The total power generation increase in the test period from March 1, 2010 to March 31, 2011, is 23.6% in Taipei (an area of low solar energy resource). The long-term performance of the present 1X-3P tracking PV is shown very close to the 1-axis continuous tracking PV in Taiwan (Chang, 2009). If the 1A-3P tracking PV is used in the area of high solar energy resource with yearly-average HT > 17 MJ/m2 day, the increase of total long-term power generation with respect to fixed PV will be higher than 37.5%. This is very close to that of dual-axis continuous tracking PV.The 1A-3P tracker can be easily mounted on the wall of a building. The cost of the whole tracker is about the same as the regular mounting cost of a conventional rooftop PV system. This means that there is no extra cost for 1A-3P PV mounted on buildings. The 1A-3P PV is quite suitable for building-integrated applications.  相似文献   

19.
This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of ‘solar cogeneration’ by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage.System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings.The relationship between the solar collector’s area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of primary energy saving than conventional systems fed by vapour compression chillers and coupled with PV cells.All SAC systems present good figures for primary energy consumption. The best performances are seen in systems with integrated heat pumps and small solar collector areas. The economics of these SAC systems at current equipment costs and energy prices are acceptable. They become more interesting in the case of public incentives of up to 30% of the investment cost (Simple Payback Time from 5 to 10 years) and doubled energy prices.  相似文献   

20.
刘杰  姜海波 《可再生能源》2012,30(3):118-121
为了优化偏远岛礁能源保障模式,通过分析柴油发电和可再生能源发电的分项费用特点,分别建立了这两种发电模式的费用表达式,并给出了可再生能源发电投资回收期和寿命期内节省费用的计算公式。以南海岛礁为例分析了太阳能和风能资源状况、柴油运输费用特点,以示例的形式探讨了光伏设备投资回收期与运输费用之间的关系,以及节省费用数额与运行时间之间的关系。研究表明,在偏远岛礁开发利用太阳能和风能资源在经济上具有可行性;岛礁距离越远,可再生能源设备投资回收期越短,节省的费用越多;在南海岛礁光伏发电设备投资回收期一般不超过8 a。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号