首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper assesses the three leading technologies for capture of CO2 in power generation plants, i.e., post-combustion capture, pre-combustion capture and oxy-fuel combustion. Performance, cost and emissions data for coal and natural gas-fired power plants are presented, based on information from studies carried out recently for the IEA Greenhouse Gas R&D Programme by major engineering contractors and process licensors. Sensitivities to various potentially significant parameters are assessed.  相似文献   

2.
In this study, we identify and characterize known and new environmental consequences associated with CO2 capture from power plants, transport by pipeline and storage in geological formations. We have reviewed (analogous) environmental impact assessment procedures and scientific literature on carbon capture and storage (CCS) options. Analogues include the construction of new power plants, transport of natural gas by pipelines, underground natural gas storage (UGS), natural gas production and enhanced oil recovery (EOR) projects. It is investigated whether crucial knowledge on environmental impacts is lacking that may postpone the implementation of CCS projects. This review shows that the capture of CO2 from power plants results in a change in the environmental profile of the power plant. This change encompasses both increase and reduction of key atmospheric emissions, being: NOx, SO2, NH3, particulate matter, Hg, HF and HCl. The largest trade-offs are found for the emission of NOx and NH3 when equipping power plants with post-combustion capture. Synergy is expected for SO2 emissions, which are low for all power plants with CO2 capture. An increase in water consumption ranging between 32% and 93% and an increase in waste and by-product creation with tens of kilotonnes annually is expected for a large-scale power plant (1 GWe), but exact flows and composition are uncertain. The cross-media effects of CO2 capture are found to be uncertain and to a large extent not quantified. For the assessment of the safety of CO2 transport by pipeline at high pressure an important knowledge gap is the absence of validated release and dispersion models for CO2 releases. We also highlight factors that result in some (not major) uncertainties when estimating the failure rates for CO2 pipelines. Furthermore, uniform CO2 exposure thresholds, detailed dose-response models and specific CO2 pipeline regulation are absent. Most gaps in environmental information regarding the CCS chain are identified and characterized for the risk assessment of the underground, non-engineered, part of the storage activity. This uncertainty is considered to be larger for aquifers than for hydrocarbon reservoirs. Failure rates are found to be heavily based on expert opinions and the dose-response models for ecosystems or target species are not yet developed. Integration and validation of various sub-models describing fate and transport of CO2 in various compartments of the geosphere is at an infant stage. In conclusion, it is not possible to execute a quantitative risk assessment for the non-engineered part of the storage activity with high confidence.  相似文献   

3.
The article analyses to what extent ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity can contribute to solving Poland’s carbon capture and sequestration dilemmas. From the criteria-based evaluation of low-carbon power technologies it is found, that biogas-to-electricity is among technologies having increasing production potential in Poland. Therefore, in future biogas will be able to contribute to solving Poland’s CCS dilemmas, because it offers carbon-neutral electricity. Moreover, by applying CCS into biogas-to-electricity the ‘negative net CO2 emissions’ can be achieved. The article examines three biogas-to-electricity technologies involving CO2 capture, i.e. biogas-to-biomethane, biogas-to-CHP and biogas-to-electricity via the ORFC cycle. It is emphasised that the ORFC cycle offers low-cost CO2 separation from a CO2-H2 mixture, low O2-intensity, and the opportunities for advanced mass and energy integration of involved processes. Besides, energy conversion calculations show that the ORFC cycle can offer comparable cycle efficiency with air- and oxy-combustion combined cycles. In regard to the design of biogas-based energy systems it is recommended to include (i) distributed production of biogas in order to avoid costs of long-distance transportation of high-moisture content biomass and (ii) centralised large-scale decarbonised biogas-to-electricity power plants since costs of pipeline transportation of gases are low but large-scale plants could benefit from increased energy and CCS efficiencies.  相似文献   

4.
Carbon dioxide emissions into the atmosphere are considered among the main reasons of the greenhouse effect. The largest share of CO2 is emitted by power plants using fossil fuels. Nowadays there are several technologies to capture CO2 from power plants' exhaust gas but each of them consumes a significant part of the electric power generated by the plant. The Molten Carbonate Fuel Cell (MCFC) can be used as concentrator of CO2, due to the chemical reactions that occurs in the cell stack: carbon dioxide entering into the cathode side is transported to the anode side via CO3= ions and is finally concentrated in the anodic exhaust. MCFC systems can be integrated in existing power plants (retro fitting) to separate CO2 in the exhaust gas and, at the same time, produce additional energy. The aim of this study is to find a feasible system design for medium scale cogeneration plants which are not considered economically and technically interesting for existing technologies for carbon capture, but are increasing in numbers with respect to large size power plants. This trend, if confirmed, will increase number of medium cogeneration plants with consequent benefit for both MCFC market for this application and effect on global CO2 emissions. System concept has been developed in a numerical model, using AspenTech engineering software. The model simulates a plant, which separates CO2 from a cogeneration plant exhaust gases and produces electric power. Data showing the effect of CO2 on cell voltage and cogenerator exhaust gas composition were taken from experimental activities in the fuel cell laboratory of the University of Perugia, FCLab, and from existing CHP plants. The innovative aspect of this model is the introduction of recirculation to optimize the performance of the MCFC. Cathode recirculation allows to decrease the carbon dioxide utilization factor of the cell keeping at the same time system CO2 removal efficiency at high level. At anode side, recirculation is used to reduce the fuel consumption (due to the unreacted hydrogen) and to increase the CO2 purity in the stored gas. The system design was completely introduced in the model and several analyses were performed. CO2 removal efficiency of 63% was reached with correspondent total efficiency of about 35%. System outlet is also thermal power, due to the high temperature of cathode exhaust off gases, and it is possible to consider integration of this outlet with the cogeneration system. This system, compared to other post-combustion CO2 removal technologies, does not consume energy, but produces additional electrical and thermal power with a global efficiency of about 70%.  相似文献   

5.
This paper presents a summary of technical-economic studies. It allows evaluating, in the French context, the production cost of electricity derived from coal and gas power plants with the capture of CO2, and the cost per tonne of CO2 avoided. Three systems were studied: an Integrated Gasification Combined Cycle (IGCC), a conventional combustion of Pulverized Coal (PC) and a Natural Gas Combined Cycle (NGCC). Three main methods were envisaged for the capture of CO2: pre-combustion, post-combustion and oxy-combustion.For the IGCC, two gasification types have been studied: a current technology based on gasification of dry coal at 27 bars (Shell or GE/Texaco radiant type) integrated into a classical combined cycle providing 320 MWe, and a future technology (planned for about 2015–2020) based on gasification of a coal–water mixture (slurry) that can be compressed to 64 bars (GE/Texaco slurry type) integrated into an advanced combined cycle (type H with steam cooling of the combustion turbine blades) producing a gross power output of 1200 MWe.  相似文献   

6.
During 2006, a survey was conducted of European energy stakeholders (industry, government, environmental non-governmental organizations (NGOs), researchers and academicians and parliamentarians). A total of 512 responses was received from 28 countries as follows: industry (28%), research (34%), government (13%), NGOs (5%) and parliamentarians (4%). Three-quarters of the sample thought that widespread use of CO2 capture and storage (CCS) was ‘definitely’ or ‘probably necessary’ to achieve deep reductions in CO2 emissions between now and 2050 in their own country. Only one in eight considered that CCS was ‘probably’ or ‘definitely not necessary’. For a range of 12 identified risks, 20–40% thought that they would be ‘moderate’ or ‘very serious’, whilst 60–80% thought that there would be no risks or that the risks would be ‘minimal’. A particular risk identified by nearly half the sample is the additional use of fossil fuels due to the ‘energy penalty’ incurred by CCS. Further concerns are that development of CCS would detract from investment in renewable energy technologies. Half of the respondents thought that incentives for CCS should be set either at the same level as those for renewables or at a higher level. Environmental NGOs were consistently less enthusiastic about CCS than the energy industry.  相似文献   

7.
In this paper the authors compare monoethanolamine (MEA) to aqueous ammonia (AA) and a solvent mixture of aqueous ammonia and ethanol (EAA) with respect to their post-combustion CO2 capture performance and their environmental impact. Simulation of all processes was carried out with Aspen Plus® and compared to experimental results for CO2 scrubbing with ammonia. Of special interest was the formation of stable salts, which could be observed in the experimental CO2 capture with both ammonia solvents. If CO2 can be captured in the form of ammonium salts, energy requirements are greatly reduced, since no energy is required for solvent regeneration and CO2 compression. The environmental impact of CO2 capture was investigated for a 500 MW pulverised coal power plant employing Life Cycle Assessment (LCA) using the software SimaPro®. For a comprehensive evaluation of this impact, influencing factors such as solvent production and solvent emissions were included. With kinetics taken into account, no salt formation could be observed in CO2 removal with aqueous ammonia. The necessary reduction of ammonia emissions leads to further energy requirements, and solvent production as well as the remaining ammonia losses to the environment have a more significant environmental impact than CO2 removal with MEA.  相似文献   

8.
Gasification is a promising conversion technology to deliver high energy efficiency simultaneously with low energy and cost penalties for carbon capture. This paper is devoted to in-depth economic evaluations of pre- and post-combustion Calcium Looping (CaL) configurations for Integrated Gasification Combined Cycle (IGCC) power plants. The poly-generation capability, e.g. hydrogen and power co-generation, is also discussed. The post-combustion CaL option is a gasification power plant in which the flue gases from the gas turbine are treated for CO2 capture in a carbonation–calcination cycle. In pre-combustion CaL option, the Sorbent Enhanced Water Gas Shift (SEWGS) feature is used to produce hydrogen which is used for power generation. As benchmark case, a conventional gasification power plant without carbon capture was considered. Net power output of evaluated cases is in the range of 550–600 MW with more than 95% carbon capture rate. The pre-combustion capture configuration was evaluated also in hydrogen and power co-generation scenario. The evaluations are concentrated for estimation of capital costs, specific investment cost, operational & maintenance (O&M) costs, CO2 removal and avoidance costs, electricity costs, sensitivity analysis of technical and economic assumptions on key economic indicators etc.  相似文献   

9.
We performed a consistent comparison of state-of-the-art and advanced electricity and hydrogen production technologies with CO2 capture using coal and natural gas, inspired by the large number of studies, of which the results can in fact not be compared due to specific assumptions made. After literature review, a standardisation and selection exercise has been performed to get figures on conversion efficiency, energy production costs and CO2 avoidance costs of different technologies, the main parameters for comparison. On the short term, electricity can be produced with 85–90% CO2 capture by means of NGCC and PC with chemical absorption and IGCC with physical absorption at 4.7–6.9 €ct/kWh, assuming a coal and natural gas price of 1.7 and 4.7 €/GJ. CO2 avoidance costs are between 15 and 50 €/t CO2 for IGCC and NGCC, respectively. On the longer term, both improvements in existing conversion and capture technologies are foreseen as well as new power cycles integrating advanced turbines, fuel cells and novel (high-temperature) separation technologies. Electricity production costs might be reduced to 4.5–5.3 €ct/kWh with advanced technologies. However, no clear ranking can be made due to large uncertainties pertaining to investment and O&M costs. Hydrogen production is more attractive for low-cost CO2 capture than electricity production. Costs of large-scale hydrogen production by means of steam methane reforming and coal gasification with CO2 capture from the shifted syngas are estimated at 9.5 and 7 €/GJ, respectively. Advanced autothermal reforming and coal gasification deploying ion transport membranes might further reduce production costs to 8.1 and 6.4 €/GJ. Membrane reformers enable small-scale hydrogen production at nearly 17 €/GJ with relatively low-cost CO2 capture.  相似文献   

10.
The main objective of this study is to characterise the electric power industry's CO2 emissions and to understand its carbon capture and storage (CCS) prospects in China's Guangdong Province. Coal-fired power plants in Guangdong are the major point sources, contributing to more than 90% of CO2 emissions of the electric power industry. The fossil-fuelled power plants are mainly located in the Pearl River Delta (PRD), and the newly built and planned large plants are mainly located in coastal zones. More basic research and investigation are necessary in the coming years to develop CCS. In the medium term, the harbours of eastern cities can be the key areas for CCS demonstration projects. In the long term, the reduction effect can be more remarkable if the CO2 capture and pipeline project could be constructed on a large scale within the densest CO2 point source area in the PRD.  相似文献   

11.
In this paper, different electricity demand scenarios for Spain are presented. Population, income per capita, energy intensity and the contribution of electricity to the total energy demand have been taken into account in the calculations. Technological role of different generation technologies, i.e. coal, nuclear, renewable, combined cycle (CC), combined heat and power (CHP) and carbon capture and storage (CCS), are examined in the form of scenarios up to 2050. Nine future scenarios corresponding to three electrical demands and three options for new capacity: minimum cost of electricity, minimum CO2 emissions and a criterion with a compromise between CO2 and cost (CO2-cost criterion) have been proposed. Calculations show reduction in CO2 emissions from 2020 to 2030, reaching a maximum CO2 emission reduction of 90% in 2050 in an efficiency scenario with CCS and renewables. The contribution of CCS from 2030 is important with percentage values of electricity production around 22–28% in 2050. The cost of electricity (COE) increases up to 25% in 2030, and then this value remains approximately constant or decreases slightly.  相似文献   

12.
Lime enhanced gasification (LEGS) process based on calcium looping in which CaO is employed as CO2 sorbent is an emerging technology for hydrogen production and CO2 capture. In this work, carbide slag which was an industrial solid waste was utilized as CO2 sorbent in hydrogen production process. Modification of carbide slag by propionic acid was proposed to improve its reactivity. The CO2 capture behavior of raw and modified carbide slags was investigated in a dual fixed-bed reactor (DFR) and a thermo-gravimetric analyzer (TGA). The results show that modification of carbide slag by propionic acid enhances its CO2 capture capacity in the multiple calcination/carbonation cycles. The favorable carbonation temperature and calcination temperature for modified carbide slag are 680–700 °C and 850–950 °C, respectively. Prolonged carbonation treatment is beneficial to CO2 capture of raw and modified carbide slags. The prolonged carbonation for 9 h in the 21st cycle increases the conversions of raw and modified carbide slags in this cycle. And then the carbonation conversions of the two sorbents were also improved in the subsequent cycles. Calcined modified carbide slag shows more porous microstructure compared with calcined raw one for the same number of cycles. Modification of carbide slag by propionic acid increases the surface area, pore volume and pore area. In addition, the volume and area of the pores in 20–100 nm in diameter were improved, which had been proved to be more effective to capture CO2. The microstructure of calcined modified carbide slag favors its higher CO2 capture capacity in the multiple calcination/carbonation cycles.  相似文献   

13.
This paper quantifies the contribution of Portuguese energy policies for total and marginal abatement costs (MAC) for CO2 emissions for 2020. The TIMES_PT optimisation model was used to derive MAC curves from a set of policy scenarios including one or more of the following policies: ban on nuclear power; ban on new coal power plants without carbon sequestration and storage; incentives to natural gas power plants; and a cap on biomass use. The different MAC shows the policies’ effects in the potential for CO2 abatement. In 2020, in the most encompassing policy scenario, with all current and planned policies, is possible to abate only up to +35% of 1990 emissions at a cost below 23 € t/CO2. In the more flexible policy scenarios, it is possible to abate up to −10% of 1990 emissions below the same cost. The total energy system costs are 10–13% higher if all policies are implemented—76 to 101 B€—roughly the equivalent to 2.01–2.65% of the 2005 GDP. Thus, from a CO2 emission mitigation perspective, the existing policies introduce significant inefficiencies, possibly related to other policy goals. The ban on nuclear power is the instrument that has the most significant effect in MAC.  相似文献   

14.
Carbon dioxide is more and more pointed out as one of the factors mostly responsible of climate changes. As a consequence the reduction of CO2 emissions, especially in the energy generation field, is becoming a worldwide must.This paper presents an overview on the main issues that are expected to affect, from this standpoint, power generation scenario and a spur for a critical comparison among ways to capture CO2 by proposing new aspects to be considered within the evaluation criteria.In particular attention is drawn on the fully innovative opportunities that are offered by Molten Carbonate Fuel Cells (MCFCs) as a unique option suitable to effectively combine carbon capture from thermal plants and typical benefits of hydrogen and fuel cell power generation.As an example, such a new option is compared with one of the most common technologies forecast for reducing carbon dioxide emissions and relevant results are shortly presented.  相似文献   

15.
Newly built (greenfield) power plant offer the advantage of optimised integration measures to reduce the efficiency penalty associated with the application of a post-combustion CO2 capture process by wet chemical absorption. Especially, the integration of waste heat from the desorber overhead condenser of the CO2 capture unit (CCU) and from the CO2 compressor into the water-steam-cycle of the power plant offers optimisation potential.  相似文献   

16.
The oxy-fuel process is one of three carbon capture technologies which supply CO2 ready for sequestration - the others being post-combustion capture and IGCC with carbon capture. As yet no technology has emerged as a clear winner in the race to commercial deployment. The oxy-fuel process relies on recycled flue gas as the main heat carrier through the boiler and results in significantly different flue gas compositions. Sulphur has been shown in the study to have impacts in the furnace, during ash collection, CO2 compression and transport as well as storage, with many options for its removal or impact control. In particular, the effect of sulphur containing species can pose a risk for corrosion throughout the plant and transport pipelines. This paper presents a technical review of all laboratory and pilot work to identify impacts of sulphur impurities from throughout the oxy-fuel process, from combustion, gas cleaning, compression to sequestration with removal and remedial options. An economic assessment of the optimum removal is not considered. Recent oxy-fuel pilot trials performed in support of the Callide Oxy-fuel Project and other pilot scale data are interpreted and combined with thermodynamic simulations to develop a greater fundamental understanding of the changes incurred by recycling the flue gas. The simulations include a sensitivity analysis of process variables and comparisons between air fired and oxy-fuel fired conditions - such as combustion products, SO3 conversion and limestone addition.  相似文献   

17.
Developing new methods and technologies that compete with conventional industrial processes for CO2 capture and recovery is a hot topic in the current research. Conventional processes do not fit with the current approach of process intensification but take advantage due to their maturity and large-scale implementation. Acting in a precombusion scenario or post-combustion scenario involves the separation of CO2/H2 or CO2/N2, respectively.  相似文献   

18.
CO2 capture and storage (CCS) has received significant attention recently and is recognized as an important option for reducing CO2 emissions from fossil fuel combustion. A particularly promising option involves the use of dry alkali metal-based sorbents to capture CO2 from flue gas. Here, alkali metal carbonates are used to capture CO2 in the presence of H2O to form either sodium or potassium bicarbonate at temperatures below 100 °C. A moderate temperature swing of 120–200 °C then causes the bicarbonate to decompose and release a mixture of CO2/H2O that can be converted into a “sequestration-ready” CO2 stream by condensing the steam. This process can be readily used for retrofitting existing facilities and easily integrated with new power generation facilities. It is ideally suited for coal-fired power plants incorporating wet flue gas desulfurization, due to the associated cooling and saturation of the flue gas. It is expected to be both cost effective and energy efficient.  相似文献   

19.
This paper examines the average carbonation conversion, CO2 capture efficiency and energy requirement for post-combustion CO2 capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO2 capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO2 capture efficiency. Achieving 0.95 of CO2 capture efficiency without sulfation, 272 kJ/mol CO2 is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO2 for the modified sorbent. The modified limestone possesses greater advantages in CO2 capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO2 from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.  相似文献   

20.
This article presents a consistent techno-economic assessment and comparison of CO2 capture technologies for key industrial sectors (iron and steel, cement, petroleum refineries and petrochemicals). The assessment is based on an extensive literature review, covering studies from both industries and academia. Key parameters, e.g., capacity factor (91-97%), energy prices (natural gas: 8 €2007/GJ, coal: 2.5 €2007/GJ, grid electricity: 55 €/MWh), interest rate (10%), economic plant lifetime (20 years), CO2 compression pressure (110 bar), and grid electricity CO2 intensity (400 g/kWh), were standardized to enable a fair comparison of technologies. The analysis focuses on the changes in energy, CO2 emissions and material flows, due to the deployment of CO2 capture technologies. CO2 capture technologies are categorized into short-mid term (ST/MT) and long term (LT) technologies. The findings of this study identified a large number of technologies under development, but it is too soon to identify which technologies would become dominant in the future. Moreover, a good integration of industrial plants and power plants is essential for cost-effective CO2 capture because CO2 capture may increase the industrial onsite electricity production significantly.For the iron and steel sector, 40-65 €/tCO2 avoided may be achieved in the ST/MT, depending on the ironmaking process and the CO2 capture technique. Advanced LT CO2 capture technologies for the blast furnace based process may not offer significant advantages over conventional ones (30-55 €/tCO2 avoided). Rather than the performance of CO2 capture technique itself, low-cost CO2 emissions reduction comes from good integration of CO2 capture to the ironmaking process. Advanced smelting reduction with integrated CO2 capture may enable lower steel production cost and lower CO2 emissions than the blast furnace based process, i.e., negative CO2 mitigation cost. For the cement sector, post-combustion capture appears to be the only commercial technology in the ST/MT and the costs are above 65 €/tCO2 avoided. In the LT, a number of technologies may enable 25-55 €/tCO2 avoided. The findings also indicate that, in some cases, partial CO2 capture may have comparative advantages. For the refining and petrochemical sectors, oxyfuel capture was found to be more economical than others at 50-60 €/tCO2 avoided in ST/MT and about 30 €/tCO2 avoided in the LT. However, oxyfuel retrofit of furnaces and heaters may be more complicated than that of boilers.Crude estimates of technical potentials for global CO2 emissions reduction for 2030 were made for the industrial processes investigated with the ST/MT technologies. They amount up to about 4 Gt/yr: 1 Gt/yr for the iron and steel sector, about 2 Gt/yr for the cement sector, and 1 Gt/yr for petroleum refineries. The actual deployment level would be much lower due to various constraints, about 0.8 Gt/yr, in a stringent emissions reduction scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号