首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
通过热模拟实验与组织观察,研究了盾构机轴承套圈用钢42CrMo在热变形中的动态再结晶行为以及锻造镦粗过程道次压下量对组织精细化与均匀化的影响。结合动态再结晶规律,对锻造镦粗过程中的不同压下规程下的组织进行预测,得到在实验条件下:当单道次变形量为1 mm和2 mm时,变形过程中未发生动态再结晶而发生静态再结晶时,晶粒细化不明显,道次压下量越大,变形组织越细小;当单道次变形量为4 mm和8 mm时发生动态再结晶后,变形组织明显细小,但由于处于部分再结晶区,组织存在混晶现象。实验结果有效地验证了预测的准确性。因此,为了使镦粗过程发生动态再结晶以获得均匀细小的组织,在单道次变形量为40%条件下,应提高镦粗锻造温度到1100℃以上;在镦粗锻造温度为1050℃条件下,应加大单道次变形量到52.7%以上。  相似文献   

2.
以含长周期堆垛有序(LPSO)相的Mg-5.6Gd-0.8Zn(质量分数,%)合金为研究对象,分析了合金多向锻造过程中的变形机制、动态再结晶及显微组织演变。结果表明:变形初期,■拉伸孪生仅在部分晶粒中激发;随锻造方向的改变,不同晶体取向的晶粒能够激发孪生变形,孪生体积分数增加,孪生变体选择符合Schmid定律。孪生受阻碍的晶粒通过滑移及扭折协调变形,扭折带类型主要为转轴分布在■晶向的基面扭折。多向锻造过程中,晶界处优先发生动态再结晶;随着变形量的增加,晶界处再结晶体积分数增大,晶内孪晶与扭折界面诱发再结晶,孪晶逐渐演变为条带状细晶组织。在孪晶、扭折带切割晶粒,晶界再结晶,孪晶、扭折带诱发再结晶多重机制的共同作用下,原始粗晶组织得到了显著细化。  相似文献   

3.
利用MSC.SuperForm有限元分析软件对In718合金镦粗过程进行三维数值模拟和试验研究.分析了不同温度、摩擦和变形速率条件下等效应力-应变分布和载荷曲线。通过热模拟试验研究了In718合金不同条件下的真应力-应变曲线和微观组织。结果表明:镦粗变形分为三个变形区域,摩擦增加了变形的不均匀性和塑性变形抗力:高温锻造过程中,In718合金在基体边界上发生了动态再结晶,再结晶晶粒细小,动态再结晶进行程度随着工艺条件的不同而不同;In718合金比较合适的锻造温度为1010-1040℃之间,变形速率为0.05~0.5s^-1之间,最大变形程度可以达到70%以上。  相似文献   

4.
原始晶粒尺寸对低碳钢中铁素体动态再结晶的影响   总被引:4,自引:0,他引:4  
采用Gleeble1500型热模拟试验机进行单轴热压缩实验,研究了4种不同原始晶粒尺寸的低碳钢在变形温度为700和600℃,应变速率为10^1-10^-3s^-1条件下的变形特性及组织演变规律,探讨了原始晶粒尺寸和热加工参数Z值对铁素体动态再结晶过程的影响.结果表明:在本实验变形条件范围内,4种不同原始晶粒尺寸的低碳钢均可发生铁素体动态再结晶,原始晶粒尺寸的减小,不但在恒定Z值条件下有利于动态再结晶过程的进行,而且使铁素体可以发生动态再结晶的临界Z值和发生不连续动态再结晶的临界Z值均增大.形变强化相变生成的细小铁素体晶粒在热变形时易于发生动态再结晶,只要控制好热加工参数,可以利用动态再结晶过程,进一步细化形变强化相变生成的铁素体晶粒。  相似文献   

5.
利用单向压缩实验分别获得了以柱状晶和等轴晶为初始组织的690合金高温流变曲线,并将其导入Deform有限软件中,模拟了两种状态下合金的锻造镦粗工艺过程,重点对比了原始组织对镦粗峰值载荷的影响。结果表明:铸态和锻态690合金在热压缩过程中均发生了动态再结晶,在相同变形条件下,锻态合金再结晶比例大。镦粗过程中的峰值载荷随锻压速度的增大和坯料预热温度的减小而升高,且一般情况下铸态合金的峰值载荷更大。两种合金不同温度下应变速率敏感因子的差别导致了二者镦粗峰值载荷随工艺参数变化的规律不同。  相似文献   

6.
由于锻造2014铝合金大型锻件常采用大尺寸挤压棒材为坯料,阐明挤压棒材心部和表层组织差异对变形行为和再结晶组织的影响,对于锻造工艺参数制定、锻造过程和锻件组织性能的精确控制具有重要意义.本文在温度为250~450℃和应变速率为0.001~1 s?1的条件下研究了心部和边部试样的热变形行为.结果表明:心部和边部试样在不同...  相似文献   

7.
针对高强铝合金在多向自由锻造过程中存在热锻开裂严重及组织不均匀等问题,采用不同锻造工艺对新型Al-ZnMg-Cu高强铝合金进行等温多向锻造实验研究。并对经固溶时效热处理后的厚板锻件试样进行了组织观察与力学性能测试。分析对比了采用不同的变形温度、变形方式和锻比等工艺参数对该合金厚板锻件组织和性能的影响。结果表明:在总锻比达到11~12的条件下,采用420℃高温大变形动态再结晶和380℃低温大变形静态再结晶的成形工序均可细化锻件晶粒组织,在保持锻件较高强度性能的基础上,可以改善其塑韧性,并且可以适当减少制坯工序、缩短工艺流程和提高生产效率。  相似文献   

8.
采用Gleeble-1500D热力模拟试验机分别对7055铝合金在不同温度和应变速率下进行多道次热模拟压缩试验,利用OM分析合金在不同温度和应变速率条件下热压缩的组织特征,研究了热变形工艺参数对7055铝合金热变形组织的影响。试验结果表明,随热变形温度的增加,7055铝合金在多道次热压缩过程中合金回复和再结晶程度更大,原始晶粒的长宽比降低,再结晶晶粒尺寸增加。随着应变速率的增加,7055铝合金在多道次热压缩过程中合金回复和再结晶程度降低,原始晶粒的长宽比增加,原始晶粒内部的亚结构发展得更加丰富,再结晶晶粒尺寸减小。  相似文献   

9.
傅崇伟  黄江波  魏修宇 《硬质合金》2015,32(2):83-87,94
采用不同平均锻造比及锻造方式对烧结纯钨棒进行锻造拔长,并在不同退火制度下对锻造后钨棒进行退火,利用金相显微镜、硬度测试仪及密度测试仪对试样微观组织及物理力学性能进行分析,研究结果表明:锻造可显著提高纯钨棒密度及硬度,但平均锻造比过大会导致钨棒出现锻造开裂等现象,在1 450℃下锻造时,平均锻造比应小于32%。与较小平均锻造比、一火一端锻造的钨棒相比,采用较大平均锻造比、一火两端锻造的钨棒的组织更细,硬度更高,HV10可达452.1,在退火时亦需要更高的退火温度及更长的退火时间(1 350℃下退火60 min)才能完成再结晶,且在退火前及退火初期,该工艺锻造的钨棒硬度相对更高,随着回复再结晶的完成,两种锻造钨棒硬度逐渐降低,且硬度差别不再明显。  相似文献   

10.
利用Deform-3D软件对高铌TiAl合金包套锻造过程中的微观组织演变进行模拟。为得到模拟所需参数,在1100~1250℃和0.001~0.5 s-1的条件下对合金进行了热压缩试验。在所得试验数据的基础上,利用一种间接方法建立了合金的动态再结晶模型,并利用Avrami形式的方程对再结晶分数进行描述。采用Cingara硬化模型及所建立的再结晶分数模型构建了合金的流变应力本构模型。模拟结果显示,由于锻造过程中摩擦的存在、热量的损失以及简单单向镦粗变形的锻造方式,使得坯料中的微观组织分布不均匀。通过模拟结果与实验结果的比较,证明所建立的有限元模型能够有效地预测高铌TiAl合金在包套锻造过程中的组织演变。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号