首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
通过粉煤灰高性能混凝土碳化深度值测试,系统研究了粉煤灰掺量、水胶比、养护龄期等对粉煤灰混凝土二维碳化深度的影响,同时对比分析了粉煤灰混凝土一维和二维碳化行为。研究表明:混凝土二维碳化深度值随着粉煤灰掺量的增加而增加;水胶比越大,混凝土的二维碳化深度值越大;混凝土养护龄期越长,粉煤灰混凝土的碳化深度值越小,碳化龄期为3d、120d时,养护龄期为28d的混凝土碳化深度分别是养护龄期为90d的1.64倍和1.17倍。  相似文献   

2.
研究了强度等级(C30和C45)、龄期(28 d和120 d)、矿物掺和料(矿粉和粉煤灰)质量掺量对掺有脂肪族高效减水剂(SAF)的混凝土抗碳化性能的影响,并建立了C30/C45混凝土在28 d/120 d龄期的碳化深度与矿粉/粉煤灰掺量比例之间的回归模型。结果表明:水胶比的降低、养护龄期的延长都能提高水泥石的密实度,从而提高抗压强度和抗碳化性能;混凝土抗碳化性能随矿粉掺量的上升、粉煤灰掺量的下降而提高;当矿粉掺量占胶凝材料质量的37.5%时,C30混凝土的抗碳化性能最佳;当矿粉掺量占胶凝材料质量的31.9%时,C45混凝土的抗碳化性能最佳;当龄期增加时,粉煤灰掺量比例越大则碳化深度的下降幅度越大;矿粉和粉煤灰掺量的相对比例变化时,对低强度混凝土的影响程度要大于高强度混凝土。  相似文献   

3.
通过水泥水化放热试验和水泥石孔结构分析试验,研究持续-3℃下28 d龄期时水胶比和粉煤灰掺量对水泥水化和水泥石孔结构的影响,分析微观孔结构和水泥水化之间的关系,探究粉煤灰对水泥石微观孔结构的作用机理.试验结果表明,在持续-3℃下,水泥水化程度随着水胶比的增加而增大,水泥石含气量和平均孔径也随着水胶比的增大而增大,在一定的水胶比下,随着粉煤灰掺量的增加,水泥浆28 d龄期水化程度逐渐降低,同时,相较于纯水泥浆体,掺入粉煤灰后,水泥石28 d龄期含气量、平均孔径都有一定程度的升高,且粉煤灰掺量越大,升高幅度越大.  相似文献   

4.
李小斌 《硅酸盐通报》2019,38(12):4047-405
通过粉煤灰高性能混凝土碳化依时深度试验,结合SEM、XRD等微观分析手段,研究了粉煤灰掺量、水胶比、养护龄期等因素对粉煤灰高性能混凝土一维、二维和三维碳化深度值的影响.结果 表明:混凝土抗碳化能力随粉煤灰用量和水胶比增加而降低;前期养护时间的延长有利于混凝土抵抗碳化反应.由于叠加效应,粉煤灰混凝土三维、二维碳化较一维碳化更为严重,同试验周期下碳化深度值升高1.39~ 2.88倍.  相似文献   

5.
掺粉煤灰的砂浆和同参数混凝土碳化相关性研究   总被引:1,自引:0,他引:1  
随着混凝土的发展,矿物掺合料得到了广泛的运用,它们对混凝土抗碳化性能的影响成为国内外专家研究的热点。为了排除粗骨料对测定混凝土碳化边界的干扰,本论文以砂浆来代替同参数混凝土的角度着手,研究掺粉煤灰的砂浆的碳化行为及其和同参数混凝土的碳化行为的相关性,研究了不同水胶比,不同粉煤灰掺量,不同养护条件和不同龄期下的砂浆的碳化行为,同时研究了不同养护龄期和养护条件下同参数砂浆和混凝土碳化行为的相关性。研究结果表示粉煤灰掺量应控制在一定的范围,在28d龄期范围内,砂浆的碳化可以代替同参数的混凝土的碳化行为。  相似文献   

6.
研究了火山灰掺量、水胶比、养护龄期对砂浆强度的影响规律,并对比研究了火山灰与粉煤灰对砂浆强度的影响。结果表明:火山灰的掺量、水胶比及养护龄期对砂浆强度有较大的影响。随火山灰掺量的增大,砂浆强度呈下降趋势;相同条件下,掺火山灰与掺粉煤灰砂浆28d龄期的抗压强度无显著差异。  相似文献   

7.
研究了不同水胶比、不同粉煤灰掺量混凝土的碳化及抗冻性能。试验结果表明,随着水胶比和粉煤灰掺量的增加,混凝土碳化深度增加,混凝土碳化深度按方程D=K·tb回归,相关系数大于0.95;碳化深度与粉煤灰掺量及水胶比二元线性回归较好,混凝土抗压强度越高,抗碳化性能越好。水胶比是影响混凝土抗冻性能的主要因素,粉煤灰对混凝土抗冻性能具有不良影响。  相似文献   

8.
通过对碳化深度的测定,研究了蒸养条件下不同粉煤灰掺量混凝土的抗碳化性能随水胶比的变化情况,结果表明:蒸养粉煤灰混凝土的早期碳化增长较快,后期增长相对缓慢,且碳化深度都随着水胶比的增大而增大,但不同的粉煤灰掺量,其碳化深度随水胶比的变化规律也有所不同.  相似文献   

9.
按高性能混凝土配比制配不同水胶比、不同Ⅱ级粉煤灰掺量的普通水泥胶砂试件,浸泡在不同浓度的硫酸盐溶液中,进行长达2年的侵蚀试验。结果表明:短龄期养护条件下较低粉煤灰掺量(30%)试件在高浓度硫酸盐侵蚀环境中的长期抗蚀能力有限。而随养护龄期和Ⅱ级粉煤灰掺量的增加以及水胶比的降低,试件的抗蚀能力大幅度提高,体现出优越的长期抗侵蚀能力。  相似文献   

10.
水胶比和粉煤灰掺量对补偿收缩混凝土自收缩特性的影响   总被引:1,自引:0,他引:1  
苗苗  阎培渝 《硅酸盐学报》2012,40(11):1607-1612
通过测定基准混凝土和补偿收缩混凝土的自收缩,研究添加硫铝酸钙–氧化钙类膨胀剂的补偿收缩混凝土的自收缩特性,以及水胶比和粉煤灰掺量对于膨胀剂补偿效果的影响。结果显示:在前20h内硫铝酸钙–氧化钙类膨胀剂因为没有足够的强度约束而无法对混凝土自收缩产生补偿作用,在20~168h龄期内膨胀剂开始发挥补偿作用,自收缩减小。膨胀剂对自收缩的补偿效率受水胶比和粉煤灰掺量的影响很大,水胶比越大,膨胀剂对混凝土自收缩的补偿效率越高;粉煤灰掺量越大,膨胀剂的补偿效率越高。水胶比为0.34,粉煤灰掺量为45%时,适当掺量(6%)的膨胀剂产生的膨胀可以补偿全部的自收缩,使混凝土在30h后持续保持膨胀变形。  相似文献   

11.
This paper presents results on carbonation of concrete incorporating various constituents including chemical admixtures and fly ash. Both long- and short-term test results are discussed. For concrete with limited initial curing, it was found that the water/cement (not water/binder) ration was the most reliable parameter in predicting the resistance of concretes to carbonation.  相似文献   

12.
The project studies the influence of fly ash and slag replacement on the carbonation rate of the concrete. The experimental work includes samples of pure Portland cement concrete (CEM I 42,5 R), blast-furnace slag concrete (CEM III-B), and fly ash blended concrete. To reveal the effect of curing on carbonation rate, the concretes were exposed to various submerged curing periods during their early ages. After that, the samples were subsequently exposed in the climate room controlling 20 °C and 50% RH until the testing date when the samples had an age of 5 months. Then, the accelerated carbonation test controlling the carbon dioxide concentration of 3% by volume, with 65% relative humidity were started to perform. The depth of carbonation can be observed by spraying a phenolphthalein solution on the fresh broken concrete surface. Finally, according to Fick's law of diffusion theoretical equations are proposed as a guild for estimating the carbonation rate of fly ash and blast-furnace slag concretes exposed under natural conditions from the results from accelerated carbonation tests.  相似文献   

13.
Calcium carbonate binders were prepared via carbonating the paste specimens cast with steel slag alone or the steel slag blends incorporating 20% of Portland cement (PC) under CO2 curing (0.1 MPa gas pressure) for up to 14 d. The carbonate products, mechanical strengths, and microstructures were quantitatively investigated. Results showed that, after accelerated carbonation, the compressive strengths of both steel slag pastes and slag-PC pastes were increased remarkably, being 44.1 and 72.0 MPa respectively after 14 d of CO2 curing. The longer carbonation duration, the greater quantity of calcium carbonates formed and hence the higher compressive strength gained. The mechanical strength augments were mainly attributed to the formation of calcium carbonate, which caused microstructure densification associated with reducing pore size and pore volume in the carbonated pastes. In addition, the aggregated calcium carbonates exhibited good micromechanical properties with a mean nanoindentation modulus of 38.9 GPa and a mean hardness of 1.79 GPa.  相似文献   

14.
Zeolite Formation in Class F Fly Ash Blended Cement Pastes   总被引:5,自引:0,他引:5  
Zeolite formation in Class F fly ash blended cement pastes is under investigation. A Na–P type zeolite and Zeolite Y were synthesized from Class F fly ash and NaOH solution after 2 days of aging at room temperature and 6 days of curing at 80°C. However, no zeolites formed when KOH was used. In additional experiments, a Na–P type zeolite, Zeolite Y, and chabazite developed in cement pastes blended with Class F fly ash and NaOH solution which had been aged 2 days at room temperature and then cured 6 days at temperatures ranging from room temperature to 90°C. Seeding the pastes with natural zeolites was also investigated.  相似文献   

15.
Cement is a huge carbon dioxide producer. Supplementary cementitious materials can help reduce this outcome. However, carbonation of these blended cements remains an active subject of research. Accelerated carbonation tests (10% CO2, 25 °C and 62% RH) are performed on fly ash blended cement pastes. Experiments are performed at varying ages of carbonation (1 to 16 weeks) to measure the evolution of the carbonation depth over time and to quantify key parameters: thermogravimetric analysis (TGA), mercury intrusion porosimetry (MIP) and gamma ray attenuation method (GRAM). The total porosity decreases with a rearrangement of the microstructure due to carbonation and the creation of big capillary pores for the paste with the highest contents of fly ash (60 vol.%). The C-S-H molar volume evolution during fly ash-blended cement carbonation is calculated using a method combining MIP, TGA and GRAM formerly successfully applied to OPC paste in a paper published in the same journal.  相似文献   

16.
The impact of alkalinity on the carbonation reaction in microconcrete mortars was assessed by evaluating the changes in the microstructure, solubility, and migration of major constituents (i.e., calcium, aluminum, and silicon) for cases of partial replacement of the Portland cement with different fly ashes having varying alkalinity. Several experimental techniques (i.e., SEM-EDS, U.S. EPA Method 1313, TIC, and TGA) were used and compared as tools to characterize changes due to the carbonation reaction. The rate and extent of carbonation was inversely related to the alkalinity of the material as evident by the increase in carbonation depth, reduction of the natural pH of the material, extent of the changes in the microstructure, and extent of reaction. Calcium migrated to the carbonated region while conversely silicon migrated from the carbonated region in response to relative solubility and therefore different diffusivity in the carbonated and uncarbonated regions for each constituent.  相似文献   

17.
Studies monitoring the carbonation of NHL3.5 hydraulic lime are described. Weight-gain measurements, focused ion beam imaging, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy were used to monitor changes in structure and composition occurring in lime pastes after exposure to 100% carbon dioxide at relative humidities of 65 and 97%. Lime paste exposed to a relative humidity (R.H.) of 97% indicated a higher carbonation rate compared to paste exposed to 65% R.H. Surface analysis showed that the sample exposed to a relative humidity of 97% was completely carbonated. No calcium hydroxide was detected. A small amount of calcium hydroxide was, however, present at the surface of the sample exposed to 65% R.H. These observations suggest that high humidity results in the formation of a thin layer of crystalline calcium carbonate covering silicate and hydroxide phases. The actual mass increase of the sample also indicated that uncarbonated calcium hydroxide remained beneath the surface.  相似文献   

18.
使用特殊的增黏剂与聚羧酸减水剂,制备了掺加石灰石粉、高炉矿渣、硅灰等混合材的普通波特兰水泥浆体和和低热硅酸盐水泥浆体(水粉比为1.0)。这些水泥浆体在20℃的水中养护4年后基本完全水化。这些硬化水泥浆体在5%(质量分数)CO2、相对湿度66%和温度20℃条件下进行碳化,对比研究碳化前后水泥浆体孔结构的变化。结果显示:碳化浆体内孔直径大于10nm的孔体积明显减少;碳化浆体的孔径分布向大孔径范围偏移;掺加混合材的硬化水泥浆体结构明显趋于松散;与不掺加任何混合材的水泥浆体相比,掺加混合材的水泥浆体的孔径更大。  相似文献   

19.
The paper presents results of an investigation on the effect of initial curing conditions on the sulphate resistance of concrete made with ordinary portland cement and using pfa, silica fume and ground granulated blast furnace slag for partial replacement of cement. In addition, porosity and pore structure analysis of representative pastes was carried out to examine the relationship between these properties and sulphate resistance of concrete. The depth of carbonation in specimens of pastes was also determined.

Three different initial curing conditions immediately after casting of specimens were adopted, namely: WET/AIR CURED at 45°C, 25% RH; AIR CURED at 45°C, 25% RH; AIR CURED at 20°C, 55% RH. The results show that pore volume and pore structure of the paste bear no direct relationship with the sulphate resistance of concrete. The presence of a carbonated layer on the surface is generally accompanied by superior sulphate resistance—there are, however, important exceptions. Low humidity curing at high temperature (45°C) results in higher depths of carbonation but lower sulphate resistance than similar curing at 20°C.

The sulphate resistance of concrete increases with the replacement of cement with 22% pfa, 9% silica fume and 80% ggb slag. The sulphate resistance also increases due to drying out of concrete during early curing at low relative humidity and due to carbonation. The possible common factor which leads to this improved sulphate resistance is the reduced Ca(OH)2 content which leads to smaller volume of the expansive reaction products with sulphate ions. The effect of initial curing at high temperature (45°C) is significantly harmful to the sulphate resistance of plain concrete but much less so to the blended cement concretes.  相似文献   


20.
Effect of Carbonation on Alkali-Activated Slag Paste   总被引:2,自引:0,他引:2  
Carbonation on waterglass- and NaOH-activated slag pastes was analyzed and compared with carbonation in Portland cement pastes to determine possible differences. Thermogravimetry-differential thermal analysis (TG/DTA), Fourier-transform infrared spectrometry, and nuclear magnetic resonance were used to determine the effects on the main reaction products. According to the TG/DTA results, carbonate precipitation following carbonation is much more intense in Portland cement pastes than in alkali-activated slag pastes. This may be attributed to the fact that in Portland cement paste both the portlandite and the C–S–H gel can be carbonated, whereas in alkali-activated slag pastes, only the C–S–H gel is carbonated directly. In both systems, carbonation leads to the formation of CaCO3, Si-rich C–S–H gel, silica gel, and alumina. The carbonation of waterglass-activated slag pastes is not altered by the presence of either of the organic additives used in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号