共查询到19条相似文献,搜索用时 93 毫秒
1.
以氯化锡(SnCl4·5H2O)为原料,采用水热反应法将二氧化锡(SnO2)与多壁碳纳米管(MWCNTs)进行复合,合成SnO2/MWCNTs复合材料,研究不同多壁碳纳米管掺杂量对样品电容性能的影响。XRD研究结果表明,掺杂多壁碳纳米管并未对SnO2的晶体结构产生影响。SEM测试结果表明,MWCNTs一定程度上抑制了SnO2团聚现象;充放电测试结果表明,当MWCNTs掺杂量为60%时,在测试电流密度10 mA·g-1条件下,首次放电比电容为205 F/g,循环50次后比容量保持率为92.68%,电化学性能明显得到改善。 相似文献
2.
《应用化工》2017,(10):2048-2052
运用线性扫描伏安法(LSV)研究了磺胺(SA)在多壁碳纳米管修饰电极(MWNTs/GCE)上的电化学行为,探讨并确定了修饰体积和浓度、支持基质种类、最佳pH值、富集电位和时间等磺胺的最佳检测条件。结果表明,在pH=8.0的Na2HPO4-NaH2PO4缓冲体系中,磺胺在多壁碳纳米管修饰电极上检测到一个不可逆的氧化峰,且在1.0×10-5~2.0×10-4mol/L浓度范围内,磺胺氧化峰电流与其浓度呈现良好的线性关系,线性回归方程为Ip(μA)=0.493 6×C(μmol/L)+9.984 1,相关系数为R=0.996 3,检测下限为8.0×10-6mol/L,平行测定的相对误差(RSD)小于1.463%(n=8),样品平均加标回收率为99.21%~100.93%。 相似文献
3.
《应用化工》2022,(10):2048-2052
运用线性扫描伏安法(LSV)研究了磺胺(SA)在多壁碳纳米管修饰电极(MWNTs/GCE)上的电化学行为,探讨并确定了修饰体积和浓度、支持基质种类、最佳pH值、富集电位和时间等磺胺的最佳检测条件。结果表明,在pH=8.0的Na2HPO4-NaH2PO4缓冲体系中,磺胺在多壁碳纳米管修饰电极上检测到一个不可逆的氧化峰,且在1.0×10-52.0×10-4mol/L浓度范围内,磺胺氧化峰电流与其浓度呈现良好的线性关系,线性回归方程为Ip(μA)=0.493 6×C(μmol/L)+9.984 1,相关系数为R=0.996 3,检测下限为8.0×10-6mol/L,平行测定的相对误差(RSD)小于1.463%(n=8),样品平均加标回收率为99.21%2.0×10-4mol/L浓度范围内,磺胺氧化峰电流与其浓度呈现良好的线性关系,线性回归方程为Ip(μA)=0.493 6×C(μmol/L)+9.984 1,相关系数为R=0.996 3,检测下限为8.0×10-6mol/L,平行测定的相对误差(RSD)小于1.463%(n=8),样品平均加标回收率为99.21%100.93%。 相似文献
4.
以电化学沉积法将氧化钼(MoOx)沉积于宏观碳纳米管(CNT)纤维上,制得氧化钼包覆碳纳米管复合纤维(MoOx/CNT),研究了复合纤维的结构、相组成及电化学性能。结果表明:该复合纤维由氧化钼均匀包覆碳纳米管束的同轴纳米纤维构成,氧化钼包覆层厚度为100~175nm,碳纳米管束直径为20~60 nm,能谱分析表明包覆层含Mo和O;将该复合纤维用于电化学系统超电容,电化学测试其具有明显的电化学活性,电容量为19 F/g;该复合纤维可用于发展电化学功能纤维或编织储能器件。 相似文献
5.
利用Fe3+和[Fe(CN)6]4-溶液,采用顺序化学沉积法制得普鲁士蓝/多壁碳纳米管(PB/MWNTs)修饰电极.FTIR、SEM等结构表征表明普鲁士蓝(PB)直接沉积在多壁碳纳米管(MWNTs)的表面.电化学研究表明PB/MWNTs修饰电极上的电子传递过程受支持电解液中K+、H+浓度影响.在pH=5.6、K+浓度为0.2 mol/L的KOH-KH2PO4-KCl支持电解液中,电极表现出优异的电化学稳定性,且可用于定量测定H2O2浓度. 相似文献
6.
采用原位浸渍法一步烧结成型制备了NiO-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb)/SDC/LSCF管状结构阳极支撑型SDC电解质膜固体氧化物燃料电池(SOFCs)。以加湿H2(约含有体积分数为3%的水)为燃料,空气为氧化剂,研究了电池的电化学性能、热循环性能和工作电压下运行的稳定性。结果表明:电池在600、650、700、750、800℃的开路电压分别为1.084、1.074、1.067、1.058、1.046 V;最大输出功率密度分别为0.12、0.25、0.38、0.54和0.70 W·cm-2。单电池在700℃和0.7 V连续放电测试过程中稳定运行,没有明显的下降和衰退。单电池经历了11次热循环,输出功率稳定,能够经受住重复启动考验。 相似文献
7.
8.
利用滴涂法将血红蛋白(Hb)和多壁碳纳米管(MWNT)-聚苯胺纳米纤维(PANnano)复合纳米粒子修饰到碳糊电极(CPE)表面,并对其电化学行为进行研究。实验结果表明,血红蛋白在PANnano/MWNT膜内保持了其天然构象和较好的直接电化学行为。 相似文献
9.
10.
微生物燃料电池(MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置,通过改善阳极特性可以有效提高微生物燃料电池的产电性能。通过恒电流法电沉积制备了氧化石墨烯/聚3,4-乙烯二氧噻吩(GO/PEDOT)复合材料修饰碳毡(CF)阳极。通过循环伏安法和交流阻抗法考察了电极特性。将其应用到微生物燃料电池中,对其产电性能进行评价。结果表明,GO/PEDOT-CF电极具有较大的比表面积和优良的电化学性能;以GO/PEDOT-CF为阳极的微生物燃料电池,产电性能良好,其最大功率密度和最大电流密度达到1.138 W·m-2和4.714 A·m-2,分别是未修饰阳极的4.80倍和5.51倍。因此,GO/PEDOT复合材料是一种优良的阳极修饰材料,可有效提高MFC的产电性能。 相似文献
11.
12.
13.
14.
采用循环伏安法制备聚3,4-乙烯二氧噻吩/多壁碳纳米管(PEDOT/MWCNTs)导电复合物修饰石墨棒阳极,并应用于厌氧流化床微生物燃料电池(AFBMFC)中以考察其产电性能。采用场发射扫描电镜(FESEM)观察复合阳极的表面形貌及断面结构,并用循环伏安法(CV)和交流阻抗法(EIS)测试了碳纳米管加入前后修饰电极的电化学性能变化。结果表明,复合阳极在MFC中运行时,其最大输出功率密度达到217 mW·m-2,比未加碳纳米管的PEDOT修饰电极提高30%;相应的开路电压为837.8 mV,运行3 d后污水COD去除率达到96.4%,说明在液固流化床对传质的强化作用下,复合阳极在AFBMFC中具有良好的产电性能和污水处理效果,其中碳纳米管的加入在一定程度上提高了复合阳极的导电性及改善了微生物的附着情况。 相似文献
15.
微生物燃料电池阳极改性修饰最新研究进展 总被引:2,自引:0,他引:2
阳极是影响微生物燃料电池性能的重要因素之一,开发简易、高效的阳极改性修饰方法对微生物燃料电池的实际应用具有关键作用。对目前微生物燃料电池阳极改性修饰的最新进展展开综述,总结了分析阳极材料的方法,并对阳极修饰方法未来发展趋势进行了展望。 相似文献
16.
为提高微生物燃料电池(MFC)的废水处理效果和发电性能,制备了一种海藻酸钠-聚季铵盐11/碳毡(SA-PQ-11/CF)阳极,分别以制药废水和糖蜜废水为阳极液,以碳毡为阴极,构建微生物燃料电池(MFC)实验系统,通过扫描电子显微镜(SEM)、电化学阻抗谱(EIS)、循环伏安特性(CV)、化学需氧量(COD)对其性能进行表征。结果显示,SA-PQ-11/CF阳极具有较大的比表面积,MFC的溶液电阻和电荷转移电阻也得到明显降低。阳极液为制药废水时,采用SA-PQ-11/CF阳极的MFC的稳态输出电压和COD去除率分别约为0.22 V和62%,较常规碳毡阳极时分别提高了100%和130%。阳极液为糖蜜废水时,采用SA-PQ-11/CF阳极的MFC的稳态输出电压和COD去除率分别为0.15 V和43%,分别较采用常规碳毡阳极时提高了275%和95%。基于SA-PQ-11的阳极改性能够有效提高MFC的废水处理效果和产电能力。 相似文献
17.
微生物燃料电池是一种可以从污水中直接回收能量的新型装置。然而,还有很多问题限制了它的广泛应用,其最大的困难在于输出功率密度低。阳极材料对于提高其功率密度和能量转换效率非常重要。本文基于生物质原料,利用化学试剂活化结合热处理,制备得到了一系列具有分级孔结构的自支撑活化三维碳基阳极。这种自支撑三维阳极具有优异的导电性、良好的电化学活性、出色的传质扩散以及优良的微生物相容性。其中,6mol/L KOH溶液处理得到的三维阳极具有最优的电化学活性和最佳功率输出,其最大功率密度高达121.45W/m3,是处理前的1.8倍。此研究为构筑高效功能三维碳基MFCs电极材料提供新思路和新方法。 相似文献
18.
19.
以异佛尔酮二异氰酸酯(IPDI)、聚乙二醇(PEG400)、2,2-双羟甲基丙酸(DMPA)和甲基丙烯酸-2-羟乙酯(HEMA)为主要原料,合成光固化水性聚氨酯丙烯酸酯预聚体,以三乙醇胺中和后,原位引入经浓硝酸处理过的碳纳米管(CNTs),制备了光固化水性聚氨酯碳纳米管复合乳液(WPU/CNTs),加入光引发剂后交联固... 相似文献