首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
用示差扫描量热法(DSC)在动态条件下对CE2908聚酯/异氰尿酸三缩水甘油酯(TGIC)体系的固化反应动力学进行了研究。运用温度-升温速率图外推法确定了该体系的特征参数∶凝胶温度(T0)、固化温度(Tp)和后固化温度(Tf)分别为113℃、146℃和195℃。采用Kissinger方程和Crane方程计算CE2908聚酯/TGIC酯体系的动力学参数,平均表观活化能Ea为62.32 kJ/mol、频率因子A为8.50×106min-1、反应级数n为0.95。建立了该树脂体系的固化动力学模型。利用所建立的固化动力学方程分别讨论了等温和动态条件下CE2908聚酯/TGIC的固化反应特性,为优化聚酯/TGIC体系粉末涂料固化工艺提供了理论依据,并在生产工艺中验证了其正确性。  相似文献   

2.
本文介绍了不饱和聚酯树脂(UP)常用的几种固化反应动力学模型,实验采用差示扫描量热法(DSC)研究不饱和聚酯/复合引发体系的等温固化反应动力学。选择修正的自催化模型对等温固化DSC数据进行处理,用最小二乘法进行非线性回归,确定等温反应速率常数k0和反应级数m、n,得到动力学方程。研究结果表明不同温度下该模型拟合曲线的相关系数均在98%以上,与实验数据点相吻合,因此所选模型对该体系是适用的,为不饱和聚酯基复合材料的固化研究提供了理论依据。  相似文献   

3.
《应用化工》2022,(1):67-70
以醋酸乙烯酯、丙烯酸丁酯、丙烯酰胺为单体,通过半连续乳液聚合方法制备PVC皮革用胶黏剂,借助非等温DSC法(差示扫描量热法)研究共聚乳液的固化过程。使用Kissinger方程、Crane方程和T-β(温度-升温速率)外推法,计算共聚乳液体系固化反应的动力学参数和固化温度。结果表明,共聚乳液体系固化反应的表观活化能为51.71 k J/mol,指前因子为2.79×106S(-1),反应级数为0.889,最佳固化温度为295.4 K。  相似文献   

4.
不饱和聚酯/复合引发体系非等温固化动力学研究   总被引:4,自引:1,他引:3  
采用非等温DSC法研究了不饱和聚酯/复合引发体系在不同升温速率下的固化行为,通过T-Φ外推法确定了该体系的凝胶温度、固化温度和后固化温度分别为102.7℃,124.0℃和196.5℃。通过Kissinger和Crane方程对DSC数据进行处理,获得了固化反应的表观活化能E=116.88 kJ/mol,碰撞因子A=7.35×1014,反应级数n=0.945,并由此得到了该体系的固化动力学方程。  相似文献   

5.
合成了一种液体乙烯基硅树脂,并用FT-IR、GPC、1H NMR和29Si NMR等手段对其结构进行表征。采用非等温差示扫描量热法(DSC)研究了乙烯基硅树脂/苯基含氢硅油体系的固化反应动力学,用Kissinger方程和高级等转化率法(Vyazovkin方法)分别计算了该体系的表观活化能Ea,用Málek法进行模型拟合动力学分析,通过T-β外推法确定该体系的固化工艺参数。结果表明:Kissinger法和Vyazovkin法得到的活化能分别为85.3 kJ·mol-1和84.0 kJ·mol-1,二者所得结果的差别较小;乙烯基硅树脂体系固化动力学符合Šesták-Berggren(m,n)模型,m和n分别为0.092、1.440,拟合曲线与实验的DSC曲线吻合;该树脂体系的近似凝胶化温度为89.1℃,固化温度为127.8℃,后处理温度157.6℃。  相似文献   

6.
用差示扫描量热法(DSC)对混合型聚酯树脂进行固化动力学研究,确定了该体系的特征参数:起始固化温度(T0)、恒温固化温度(Tp)和后处理温度(Tf)分别为68℃、143℃、168℃。同时通过Kissinger以及Crane方程计算出该体系的固化反应表观活化能E为76.19 kJ/mol、反应级数n为0.913,指前因子A为4.35×108,确定了该体系的固化动力学方程。通过等温固化对该体系的研究得到了不同固化温度下转化率变化曲线,用非等温固化研究得到的动力学方程与等温固化得到的曲线进行比较研究,为优化混合型粉末涂料固化工艺提供了理论依据。  相似文献   

7.
运用非等温DSC(差示扫描量热)法对Sikapower-492G型汽车用EP(环氧树脂)结构胶在动态升温过程中的固化动力学进行了研究。根据不同升温速率时的DSC曲线,采用Kissinger法、Crane法、Ozawa法和温度-升温速率(T-β)外推法等得到该EP胶粘剂的动力学参数。结果表明:该EP胶粘剂体系的固化动力学可用1级固化动力学模型进行表征;该EP胶粘剂的凝胶化温度、固化温度和后处理温度约分别为123、164、224℃,其表观活化能、频率因子和反应级数等动力学参数分别为117 kJ/mol、1.80×1013 s-1和0.934。  相似文献   

8.
李景瑞  刘嘉林  张军营  程珏 《化工学报》2013,64(9):3421-3427
合成了一种新型环氧树脂固化剂1,4-二(4-氨基苯-1-氧)正丁烷(DDBE),并采用FTIR、1H NMR手段对其结构进行表征和确认。采用非等温差示扫描量热法(DSC)研究了N,N,N',N'-四缩水甘油基-4,4'-二氨基二苯甲烷(TGDDM)/DDBE体系的固化反应动力学,根据Kissinger方程计算体系的活化能为58.5 kJ·mol-1;采用Málek法进行模型拟合动力学分析,结果表明:其中的Šesták-Berggren模型的拟合曲线与实验的DSC曲线吻合,确定了体系的固化反应动力学参数和方程。DSC测试TGDDM/DDBE固化物玻璃化转变温度为195℃。  相似文献   

9.
高固含量聚醚醚酮改性酚醛树脂固化动力学研究   总被引:2,自引:0,他引:2  
采用溶液聚合法合成了高固含量(>80%)聚醚醚酮(PEEK)改性酚醛树脂(PF),用非等温DSC(差示扫描量热)法和T-β(温度-升温速率)外推法对其固化反应动力学过程进行了研究,并根据Kissinger方程、Ozawa方程和Crane方程等计算出该固化反应的动力学参数。结果表明:改性树脂的凝胶化温度为136.68℃,固化温度为167.16℃,后处理温度为197.39℃;其固化体系的表观活化能为100.02 kJ/mol,频率因子为1.84×106 s-1,反应级数为0.94(近似于1级反应)。  相似文献   

10.
改性丙烯酸酯类胶粘剂应用于挠性印制电路板(FPC)及其基材时,其固化程度对性能有着决定性的影响。本文以自制的环氧树脂改性的丙烯酸酯类胶粘剂为例,通过动态差示扫描量热仪(DSC)从理论上分析其非等温固化的动力学行为,以研究其在室温时的储存稳定性和高温固化的工艺条件。然后通过傅里叶变换红外光谱仪(FT-IR)研究其在室温以及125~300℃温度范围内的固化反应历程,以保证该胶粘剂应用于FPC的热固性胶膜/片的固化性能或效果。研究结果表明:(1)通过非等温DSC测试,确定了改性丙烯酸酯胶粘剂的固化动力学方程,由此推算其在10~50℃的常规储存温度下的反应速率常数K值低至10-5 min-1级别及以下,具有优异的B阶稳定性;同时在180℃及以上的K值达到10-1 min-1级别,可以满足其高温烘烤迅速固化的使用要求。(2)由动态DSC测试得到的三种特征温度,进而推算本胶膜的理论固化温度为182℃,且在此温度下实现100%固化需时约100 min,并通过DSC测试进行了验证。(3)通过FT-IR对比验证了以上...  相似文献   

11.
以双马来酰亚胺(BMI)、二烯丙基双酚A(BA)和七苯基倍半硅氧烷三硅醇(POSS-triol)为原料,采用非等温差示扫描量热(DSC)法研究了BMI/BA/POSS-triol体系的固化反应过程。运用Kissinger极值法、Crane法、Flynn-Wall-Ozawa(FWO)等转化率法和T-β(温度-升温速率)外推法确定了改性树脂体系的固化反应动力学参数和固化工艺参数。结果表明:改性树脂体系的固化反应活化能和反应级数(接近于1)均随POSS-triol用量增加而变化不大,说明POSS-triol的加入并没有明显改变BMI/BA体系的固化反应机理;改性树脂体系的凝胶温度为175.7℃,固化温度为226.9℃,后处理温度为271.7℃。  相似文献   

12.
柔性UPR树脂/粉煤灰非等温固化动力学   总被引:1,自引:0,他引:1  
王世兵  张奇志 《广州化工》2010,38(8):131-133,151
用差示扫描量热法(DSC)研究了柔性不饱和聚酯树脂/粉煤灰体系的非等温固化过程,利用T-β外推法确定了体系的固化工艺温度:凝胶温度257.625K、固化温度374.275K、后处理温度406.565K。用Flynn-Wall-Ozawa法和Friedman-Reich-Levi法获得了柔性UPR固化反应表观活化能为Ea=83.94kJ·mol-1。由ASTME698-79标准方法求得指前因子,lnA=25.27;结合Crane方程分析知,复合体系的固化反应接近于一级反应。最终建立了复合体系固化反应动力学方程为ln(ddαt)=25.27-10096.22T+ln(1-α)0.9126。  相似文献   

13.
在高沸点的DMAc(N,N′-二甲基乙酰胺)溶液中制备了环氧树脂/聚酰胺酸(EP/PAA)共混物。采用非等温DSC(差示扫描量热)法研究了EP/PAA体系的固化动力学及其固化工艺,并通过Kissinger法、Ozawa法和Crane法计算出该体系的动力学参数。结果表明:该EP/PAA体系的固化条件为"100℃/2 h→120℃/2 h",后处理工艺为140℃/2 h;其平均表观活化能为61.15 kJ/mol,反应级数为0.95,近似于1级反应;升温速率不同时,EP/PAA固化体系的频率因子(A)、峰温时的反应速率常数(KP)均不相同。  相似文献   

14.
采用非等温DSC法对一种纤维缠绕用环氧树脂体系进行了固化动力学研究。基于不同升温速率下的测试数据,确定了固化工艺参数,建立了n级动力学模型,并比较了通过Kissinger方程和Ozawa方程得到的活化能。研究表明:该树脂体系凝胶化温度为89.44℃,固化温度为114.5℃,后处理温度为155.04℃;固化反应过程符合n级动力学模型。  相似文献   

15.
采用DSC研究了以双氰胺/取代脲为潜伏型中温固化体系的三官能团环氧树脂TDE-85的固化反应动力学,探讨了反应机理并确定了最佳的固化工艺参数。结果表明,固化温度<140℃时,受扩散效应和双氰胺在环氧树脂中溶解速率的影响,体系的等温固化行为与自催化模型存在偏差;固化温度>150℃后,体系的等温固化行为可用自催化反应模型很好地描述,其表观活化能为86.33 kJ/mol,指前因子为2.68×1010,总反应级数(m+n)为2~3。综合变温DSC和等温DSC的实验结果,可确定体系的最佳固化工艺条件为:120℃下预固化1 h后再升温至150℃保温1 h。  相似文献   

16.
环氧树脂固化动力学的非等温DSC研究   总被引:5,自引:0,他引:5  
用非等温DSC对环氧树脂在动态升温过程中的固化动力学进行了研究,采用Kissinger方程对固化动力学模型参数中固化反应活化能、反应级数和指前因子进行了计算,并用Ozawa法对固化反应活化能进行了验证,计算结果表明,EP/DDS固化反应符合n阶固化动力学模型,结合不同升温速率下的特征温度,对环氧树脂的固化条件进行了优化。  相似文献   

17.
利用丁香酚环氧和环四硅氧烷硅氢加成得到新型生物基环氧树脂D4EUEP,通过核磁共振氢谱和飞行时间质谱表征其准确结构。使用非等温DSC对D4EUEP/33DDS固化体系进行分析,采用双参数自催化模型和Málek判据建立了该体系固化动力学模型。模型计算结果与实验结果相关系数大于99%,证明该模型可以较好地描述D4EUEP/33DDS体系的固化过程。通过AICM方法研究了体系的有效活化能与转化率之间的关系,揭示了微观反应机理的变化,并通过Vyazovkin法对D4EUEP/33DDS体系进行了等温固化预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号