首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Parallel integer sorting and simulation amongst CRCW models   总被引:1,自引:0,他引:1  
 In this paper a general technique for reducing processors in simulation without any increase in time is described. This results in an O(√log n) time algorithm for simulating one step of PRIORITY on TOLERANT with processor-time product of O(n log log n); the same as that for simulating PRIORITY on ARBITRARY. This is used to obtain an O(log n/log log n+√log n (log log m− log log n)) time algorithm for sorting n integers from the set {0,…, m−1}, mn, with a processor-time product of O(n log log m log log n) on a TOLERANT CRCW PRAM. New upper and lower bounds for ordered chaining problem on an allocated COMMON CRCW model are also obtained. The algorithm for ordered chaining takes O(log n/log log n) time on an allocated PRAM of size n. It is shown that this result is best possible (upto a constant multiplicative factor) by obtaining a lower bound of Ω(r log n/(log r+log log n)) for finding the first (leftmost one) live processor on an allocated-COMMON PRAM of size n of r-slow virtual processors (one processor simulates r processors of allocated PRAM). As a result, for ordered chaining problem, “processor-time product” has to be at least Ω(n log n/log log n) for any poly-logarithmic time algorithm. Algorithm for ordered-chaining problem results in an O(log N/log log N) time algorithm for (stable) sorting of n integers from the set {0,…, m−1} with n-processors on a COMMON CRCW PRAM; here N=max(n, m). In particular if, m=n O(1) , then sorting takes Θ(log n/log log n) time on both TOLERANT and COMMON CRCW PRAMs. Processor-time product for TOLERANT is O(n(log log n)2). Algorithm for COMMON uses n processors. Received August 13, 1992/June 30, 1995  相似文献   

2.
Y. Nekrich 《Algorithmica》2007,49(2):94-108
In this paper we present new space efficient dynamic data structures for orthogonal range reporting. The described data structures support planar range reporting queries in time O(log n+klog log (4n/(k+1))) and space O(nlog log n), or in time O(log n+k) and space O(nlog  ε n) for any ε>0. Both data structures can be constructed in O(nlog n) time and support insert and delete operations in amortized time O(log 2 n) and O(log nlog log n) respectively. These results match the corresponding upper space bounds of Chazelle (SIAM J. Comput. 17, 427–462, 1988) for the static case. We also present a dynamic data structure for d-dimensional range reporting with search time O(log  d−1 n+k), update time O(log  d n), and space O(nlog  d−2+ε n) for any ε>0. The model of computation used in our paper is a unit cost RAM with word size log n. A preliminary version of this paper appeared in the Proceedings of the 21st Annual ACM Symposium on Computational Geometry 2005. Work partially supported by IST grant 14036 (RAND-APX).  相似文献   

3.
We revisit the problem of indexing a string S[1..n] to support finding all substrings in S that match a given pattern P[1..m] with at most k errors. Previous solutions either require an index of size exponential in k or need Ω(m k ) time for searching. Motivated by the indexing of DNA, we investigate space efficient indexes that occupy only O(n) space. For k=1, we give an index to support matching in O(m+occ+log nlog log n) time. The previously best solution achieving this time complexity requires an index of O(nlog n) space. This new index can also be used to improve existing indexes for k≥2 errors. Among others, it can support 2-error matching in O(mlog nlog log n+occ) time, and k-error matching, for any k>2, in O(m k−1log nlog log n+occ) time.  相似文献   

4.
Yijie Han 《Algorithmica》2008,51(4):428-434
We present an O(n 3(log log n/log n)5/4) time algorithm for all pairs shortest paths. This algorithm improves on the best previous result of O(n 3/log n) time. Research supported in part by NSF grant 0310245.  相似文献   

5.
We use the recently introduced advising scheme framework for measuring the difficulty of locally distributively computing a Minimum Spanning Tree (MST). An (m,t)-advising scheme for a distributed problem ? is a way, for every possible input I of ?, to provide an “advice” (i.e., a bit string) about I to each node so that: (1) the maximum size of the advices is at most m bits, and (2) the problem ? can be solved distributively in at most t rounds using the advices as inputs. In case of MST, the output returned by each node of a weighted graph G is the edge leading to its parent in some rooted MST T of G. Clearly, there is a trivial (?log?n?,0)-advising scheme for MST (each node is given the local port number of the edge leading to the root of some MST T), and it is known that any (0,t)-advising scheme satisfies $t\geq\tilde{\Omega}(\sqrt{n})We use the recently introduced advising scheme framework for measuring the difficulty of locally distributively computing a Minimum Spanning Tree (MST). An (m,t)-advising scheme for a distributed problem ℘ is a way, for every possible input I of ℘, to provide an “advice” (i.e., a bit string) about I to each node so that: (1) the maximum size of the advices is at most m bits, and (2) the problem ℘ can be solved distributively in at most t rounds using the advices as inputs. In case of MST, the output returned by each node of a weighted graph G is the edge leading to its parent in some rooted MST T of G. Clearly, there is a trivial (⌈log n⌉,0)-advising scheme for MST (each node is given the local port number of the edge leading to the root of some MST T), and it is known that any (0,t)-advising scheme satisfies t 3 [(W)\tilde](?n)t\geq\tilde{\Omega}(\sqrt{n}). Our main result is the construction of an (O(1),O(log n))-advising scheme for MST. That is, by only giving a constant number of bits of advice to each node, one can decrease exponentially the distributed computation time of MST in arbitrary graph, compared to algorithms dealing with the problem in absence of any a priori information. We also consider the average size of the advices. On the one hand, we show that any (m,0)-advising scheme for MST gives advices of average size Ω(log n). On the other hand we design an (m,1)-advising scheme for MST with advices of constant average size, that is one round is enough to decrease the average size of the advices from log n to constant.  相似文献   

6.
We study local, distributed algorithms for the capacitated minimum dominating set (CapMDS) problem, which arises in various distributed network applications. Given a network graph G=(V,E), and a capacity cap(v)∈ℕ for each node vV, the CapMDS problem asks for a subset SV of minimal cardinality, such that every network node not in S is covered by at least one neighbor in S, and every node vS covers at most cap(v) of its neighbors. We prove that in general graphs and even with uniform capacities, the problem is inherently non-local, i.e., every distributed algorithm achieving a non-trivial approximation ratio must have a time complexity that essentially grows linearly with the network diameter. On the other hand, if for some parameter ε>0, capacities can be violated by a factor of 1+ε, CapMDS becomes much more local. Particularly, based on a novel distributed randomized rounding technique, we present a distributed bi-criteria algorithm that achieves an O(log Δ)-approximation in time O(log 3 n+log (n)/ε), where n and Δ denote the number of nodes and the maximal degree in G, respectively. Finally, we prove that in geometric network graphs typically arising in wireless settings, the uniform problem can be approximated within a constant factor in logarithmic time, whereas the non-uniform problem remains entirely non-local.  相似文献   

7.
A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/log log n) times the local density of the caterpillar, where the local density is a well known lower bound on the bandwidth. This result is best possible in the sense that there are caterpillars whose bandwidth is larger than their local density by a factor of Ω(log n/log log n). The previous best approximation ratio for the bandwidth of caterpillars was O(log n). We show that any further improvement in the approximation ratio would require using linear arrangements that do not respect the order of the vertices of the backbone. We also show how to obtain a (1+ε) approximation for the bandwidth of caterpillars in time . This result generalizes to trees, planar graphs, and any family of graphs with treewidth .  相似文献   

8.
The Distributed Mobility-Adaptive Clustering (DMAC) due to Basagni partitions the nodes of a mobile ad hoc network into clusters, thus giving the network a hierarchical organization. This algorithm supports the mobility of the nodes, even during the cluster formation. The main feature of DMAC is that in a weighted network (in which two or more nodes cannot have the same weight), nodes have to choose the clusterheads taking into account only the node weight, i.e. the mobility when a node weight is the inverse of its speed. In our approach many nodes may have the same speed and hence the same weight. We assume that nodes have no identities and the number of nodes, say n, is the only known parameter of the network. After the randomized clustering, we show that the initialization problem can be solved in a multi-hop ad hoc wireless network of n stations in O(k 1/2log 1/2 k)+D b −1+O(log (max (P i )+log 2max (P i )) broadcast rounds with high probability, where k is the number of clusters, D b is the blocking diameter and max (P i ), 1≤ik, is the maximum number of nodes in a cluster. Thus the initialization protocol presented here uses less broadcast rounds than the one in Ravelemanana (IEEE Trans. Parallel Distributed Syst. 18(1):17–28 2007).  相似文献   

9.
Mesh of trees (MOT) is well known for its small diameter, high bisection width, simple decomposability and area universality. On the other hand, OTIS (Optical Transpose Interconnection System) provides an efficient optoelectronic model for massively parallel processing system. In this paper, we present OTIS-MOT as a competent candidate for a two-tier architecture that can take the advantages of both the OTIS and the MOT. We show that an n4-n^{4}_{-} processor OTIS-MOT has diameter 8log n +1 (The base of the logarithm is assumed to be 2 throughout this paper.) and fault diameter 8log n+2 under single node failure. We establish other topological properties such as bisection width, multiple paths and the modularity. We show that many communication as well as application algorithms can run on this network in comparable time or even faster than other similar tree-based two-tier architectures. The communication algorithms including row/column-group broadcast and one-to-all broadcast are shown to require O(log n) time, multicast in O(n 2log n) time and the bit-reverse permutation in O(n) time. Many parallel algorithms for various problems such as finding polynomial zeros, sales forecasting, matrix-vector multiplication and the DFT computation are proposed to map in O(log n) time. Sorting and prefix computation are also shown to run in O(log n) time.  相似文献   

10.
Given an n-point metric (P,d) and an integer k>0, we consider the problem of covering P by k balls so as to minimize the sum of the radii of the balls. We present a randomized algorithm that runs in n O(log n⋅log Δ) time and returns with high probability the optimal solution. Here, Δ is the ratio between the maximum and minimum interpoint distances in the metric space. We also show that the problem is NP-hard, even in metrics induced by weighted planar graphs and in metrics of constant doubling dimension.  相似文献   

11.
New tight bounds are presented on the minimum length of planar straight line graphs connecting n given points in the plane and having convex faces. Specifically, we show that the minimum length of a convex Steiner partition for n points in the plane is at most O(log n/log log n) times longer than a Euclidean minimum spanning tree (EMST), and this bound is the best possible. Without Steiner points, the corresponding bound is known to be Θ(log n), attained for n vertices of a pseudo-triangle. We also show that the minimum length convex Steiner partition of n points along a pseudo-triangle is at most O(log log n) times longer than an EMST, and this bound is also the best possible. Our methods are constructive and lead to O(nlog n) time algorithms for computing convex Steiner partitions having O(n) Steiner points and weight within the above worst-case bounds in both cases.  相似文献   

12.
Power optimization is a central issue in wireless network design. Given a graph with costs on the edges, the power of a node is the maximum cost of an edge incident to it, and the power of a graph is the sum of the powers of its nodes. Motivated by applications in wireless networks, we consider several fundamental undirected network design problems under the power minimization criteria. Given a graph G=(V,E)\mathcal{G}=(V,\mathcal{E}) with edge costs {c(e):e∈ℰ} and degree requirements {r(v):vV}, the Minimum-Power Edge-Multi-Cover\textsf{Minimum-Power Edge-Multi-Cover} (MPEMC\textsf{MPEMC} ) problem is to find a minimum-power subgraph G of G\mathcal{G} so that the degree of every node v in G is at least r(v). We give an O(log n)-approximation algorithms for MPEMC\textsf{MPEMC} , improving the previous ratio O(log 4 n). This is used to derive an O(log n+α)-approximation algorithm for the undirected $\textsf{Minimum-Power $\textsf{Minimum-Power ($\textsf{MP$\textsf{MP ) problem, where α is the best known ratio for the min-cost variant of the problem. Currently, _boxclosen-k)\alpha=O(\log k\cdot \log\frac{n}{n-k}) which is O(log k) unless k=no(n), and is O(log 2 k)=O(log 2 n) for k=no(n). Our result shows that the min-power and the min-cost versions of the $\textsf{$\textsf{ problem are equivalent with respect to approximation, unless the min-cost variant admits an o(log n)-approximation, which seems to be out of reach at the moment.  相似文献   

13.
The classic balls-into-bins game considers the experiment of placing m balls independently and uniformly at random (i.u.r.) in n bins. For m=n , it is well known that the maximum load, i.e., the number of balls in the fullest bin is Θ(log n/log log n) , with high probability. It is also known (see [S2]) that a maximum load of O( m / n ) can be obtained for all m≥ n if each ball is allocated in one (suitably chosen) of two (i.u.r.) bins. Stemann presents a distributed algorithm to find the ``suitable' bin for each ball. The algorithm uses r communication rounds to achieve a maximum load of , with high probability. Adler et al. [ACMR] show that Stemann's protocol is optimal up to a constant factor for constant r . In this paper we extend the above results in two directions: we generalize the lower bound to arbitrary r≤log log n . This implies that Stemann's protocol is optimal for all r . Our key result is a generalization of Stemann's upper bound to weighted balls: Let W A (resp. W M ) denote the average (resp. maximum) weight of the balls. Furthermore, let Δ=W A /W M . Then the optimal maximum load is Ω(m/n⋅ W A +W M ) . We present a protocol that achieves a maximum load of γ⋅( m / n ⋅ W A +W M ) using O( log log n / log (γ⋅(m/n⋅Δ+1)) ) communication rounds. For uniform weights this matches the results of Stemann. In particular, we achieve a load of O( m / n ⋅ W A +W M ) using log log n communication rounds, which is optimal up to a constant factor. An extension of our lower bound shows that our algorithm also reaches a load which is within a constant factor of the optimal load in the case of weighted balls. All the balls-into-bins games model load balancing problems: the balls are jobs, the bins are resources, the task is to allocate the jobs to the resources in such a way that the maximum load is minimized. Our extension to weighted balls allows us to extend previous bounds to models where resource requirements may vary. For example, if the jobs are computing tasks, their running times may vary. Applications of such load balancing problems occur, e.g., for client-server networks and for multimedia-servers using disk arrays. Received December 23, 1997, and in final form September 9, 1998.  相似文献   

14.
Summary.  In this paper, we deal with the compact routing problem, that is implementing routing schemes that use a minimum memory size on each router. A universal routing scheme is a scheme that applies to all n-node networks. In [31], Peleg and Upfal showed that one cannot implement a universal routing scheme with less than a total of Ω(n 1+1/(2s+4)) memory bits for any given stretch factor s≧1. We improve this bound for stretch factors s, 1≦s<2, by proving that any near-shortest path universal routing scheme uses a total of Ω(n 2) memory bits in the worst-case. This result is obtained by counting the minimum number of routing functions necessary to route on all n-node networks. Moreover, and more fundamentally, we give a tight bound of Θ(n log n) bits for the local minimum memory requirement of universal routing scheme of stretch factors s, 1≦s<2. More precisely, for any fixed constant ɛ, 0<ɛ<1, there exists a n-node network G on which at least Ω(n ɛ) routers require Θ(n log n) bits each to code any routing function on G of stretch factor <2. This means that, whatever you choose the routing scheme, there exists a network on which one cannot compress locally the routing information better than routing tables do. Received: August 1995 / Accepted: August 1996  相似文献   

15.
We design compact and responsive kinetic data structures for detecting collisions between n convex fat objects in 3-dimensional space that can have arbitrary sizes. Our main results are:
(i)  If the objects are 3-dimensional balls that roll on a plane, then we can detect collisions with a KDS of size O(nlog n) that can handle events in O(log 2 n) time. This structure processes O(n 2) events in the worst case, assuming that the objects follow constant-degree algebraic trajectories.
(ii)  If the objects are convex fat 3-dimensional objects of constant complexity that are free-flying in ℝ3, then we can detect collisions with a KDS of O(nlog 6 n) size that can handle events in O(log 7 n) time. This structure processes O(n 2) events in the worst case, assuming that the objects follow constant-degree algebraic trajectories. If the objects have similar sizes then the size of the KDS becomes O(n) and events can be handled in O(log n) time.
M.A. and S.-H.P. were supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 612.065.307. M.d.B. was supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 639.023.301.  相似文献   

16.
We present two new algorithms, Arc Length and Peer Count, for choosing a peer uniformly at random from the set of all peers in Chord (Proceedings of the ACM SIGCOMM 2001 Technical Conference, 2001). We show analytically that, in expectation, both algorithms have latency O(log n) and send O(log n) messages. Moreover, we show empirically that the average latency and message cost of Arc Length is 10.01log n and that the average latency and message cost of Peer Count is 20.02log n. To the best of our knowledge, these two algorithms are the first fully distributed algorithms for choosing a peer uniformly at random from the set of all peers in a Distributed Hash Table (DHT). Our motivation for studying this problem is threefold: to enable data collection by statistically rigorous sampling methods; to provide support for randomized, distributed algorithms over peer-to-peer networks; and to support the creation and maintenance of random links, and thereby offer a simple means of improving fault-tolerance. Research of S. Lewis, J. Saia and M. Young was partially supported by NSF grant CCR-0313160 and Sandia University Research Program grant No. 191445.  相似文献   

17.
Approximate string matching is about finding a given string pattern in a text by allowing some degree of errors. In this paper we present a space efficient data structure to solve the 1-mismatch and 1-difference problems. Given a text T of length n over an alphabet A, we can preprocess T and give an -bit space data structure so that, for any query pattern P of length m, we can find all 1-mismatch (or 1-difference) occurrences of P in O(|A|mlog log n+occ) time, where occ is the number of occurrences. This is the fastest known query time given that the space of the data structure is o(nlog 2 n) bits. The space of our data structure can be further reduced to O(nlog |A|) with the query time increasing by a factor of log  ε n, for 0<ε≤1. Furthermore, our solution can be generalized to solve the k-mismatch (and the k-difference) problem in O(|A| k m k (k+log log n)+occ) and O(log  ε n(|A| k m k (k+log log n)+occ)) time using an -bit and an O(nlog |A|)-bit indexing data structures, respectively. We assume that the alphabet size |A| is bounded by for the -bit space data structure.  相似文献   

18.
Consider a rooted tree T of arbitrary maximum degree d representing a collection of n web pages connected via a set of links, all reachable from a source home page represented by the root of T. Each web page i carries a probability p i representative of the frequency with which it is visited. By adding hotlinks—shortcuts from a node to one of its descendents—we wish to minimize the expected number of steps l needed to visit pages from the home page, expressed as a function of the entropy H(p) of the access probabilities p. This paper introduces several new strategies for effectively assigning hotlinks in a tree. For assigning exactly one hotlink per node, our method guarantees an upper bound on l of 1.141H(p)+1 if d>2 and 1.08H(p)+2/3 if d=2. We also present the first efficient general methods for assigning at most k hotlinks per node in trees of arbitrary maximum degree, achieving bounds on l of at most \frac2H(p)log(k+1)+1\frac{2H(p)}{\log(k+1)}+1 and \fracH(p)log(k+d)-logd+1\frac{H(p)}{\log(k+d)-\log d}+1 , respectively. All our methods are strong, i.e., they provide the same guarantees on all subtrees after the assignment. We also present an algorithm implementing these methods in O(nlog n) time, an improvement over the previous O(n 2) time algorithms. Finally we prove a Ω(nlog n) lower bound on the running time of any strong method that guarantee an average access time strictly better than 2H(p).  相似文献   

19.
We provide the first sparse covers and probabilistic partitions for graphs excluding a fixed minor that have strong diameter bounds; i.e. each set of the cover/partition has a small diameter as an induced sub-graph. Using these results we provide improved distributed name-independent routing schemes. Specifically, given a graph excluding a minor on r vertices and a parameter ρ>0 we obtain the following results: (1) a polynomial algorithm that constructs a set of clusters such that each cluster has a strong-diameter of O(r 2 ρ) and each vertex belongs to 2 O(r) r! clusters; (2) a name-independent routing scheme with a stretch of O(r 2), headers of O(log n+rlog r) bits, and tables of size 2 O(r) r! log 4 n/log log n bits; (3) a randomized algorithm that partitions the graph such that each cluster has strong-diameter O(r6 r ρ) and the probability an edge (u,v) is cut is O(rd(u,v)/ρ).  相似文献   

20.
We consider the problem of fitting a step function to a set of points. More precisely, given an integer k and a set P of n points in the plane, our goal is to find a step function f with k steps that minimizes the maximum vertical distance between f and all the points in P. We first give an optimal Θ(nlog n) algorithm for the general case. In the special case where the points in P are given in sorted order according to their x-coordinates, we give an optimal Θ(n) time algorithm. Then, we show how to solve the weighted version of this problem in time O(nlog 4 n). Finally, we give an O(nh 2log n) algorithm for the case where h outliers are allowed. The running time of all our algorithms is independent of k.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号