首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Silene latifoliaHadena bicruris nursery pollination system, the Hadena moth is both pollinator and seed predator of its host plant. Floral scent, which differs among S. latifolia individuals and populations, is important for adult Hadena to locate its host. However, the success of moth larvae is strongly reduced if hosts are infected by the anther smut fungus Microbotryum violaceum, a pathogen that is transmitted by flower visitors. There were no qualitative differences between the scent of flowers from healthy and diseased plants. In addition, electroantennographic measurements showed that Hadena responded to the same subset of 19 compounds in samples collected from healthy and diseased plants. However, there were significant quantitative differences in scent profiles. Flowers from diseased plants emitted both a lower absolute amount of floral scent and had a different scent pattern, mainly due to their lower absolute amount of lilac aldehyde, whereas their amount of (E)-β-ocimene was similar to that in healthy flowers. Dual choice behavioral wind tunnel tests using differently scented flowers confirmed that moths respond to both qualitative and quantitative aspects of floral scent, suggesting that they could use differences in floral scent between healthy and infected plants to discriminate against diseased plants. Population mean fruit predation rates significantly increased with population mean levels of the emission rates of lilac aldehyde per flower, indicating that selection on floral scent compounds may not only be driven by effects on pollinator attraction but also by effects on fruit predation. However, variation in mean emission rates of scent compounds per flower generally could not explain the higher fruit predation in populations originating from the introduced North American range compared to populations native to Europe.  相似文献   

2.
Many bees are oligolectic and collect pollen for their larvae only from one particular plant family or genus. Here, we identified flower scent compounds of two Salix species important for the attraction of the oligolectic bee Andrena vaga, which collects pollen only from Salix. Flower scent was collected by using dynamic-headspace methods from Salix caprea and S. atrocinerea, and the samples were subsequently analyzed by coupled gas chromatographic–electroantennographic detection (GC-EAD) to detect possible attractants of A. vaga. EAD active compounds were identified by gas chromatography coupled to mass spectrometry. Both Salix species had relatively similar scent profiles, and the antennae of male and female bees responded to at least 16 compounds, among them different benzenoids as well as oxygenated monoterpenoids and sesquiterpenoids. The strongest antennal responses were triggered by 1,4-dimethoxybenzene, and in field bioassays, this benzenoid attracted females of A. vaga at the beginning of its flight period, but not at the end.  相似文献   

3.
Trees of the genus Glochidion (Phyllanthaceae) are pollinated by females of Epicephala moths (Gracillariidae) whose larvae consume the seeds of the flowers that they pollinate. Each Epicephala moth species is specific locally to a single host species, although two to four Glochidion hosts often cooccur. To investigate the role of olfactory signals in maintaining the plant−moth specificity, we analyzed floral scent composition of five Glochidion species by using gas chromatography–mass spectrometry (GC-MS) and conducted Y-tube olfactometer bioassays with Epicephala moths and their host flowers. The GC-MS analysis showed that the floral scents of the five Glochidion species are dominated by (R)-(−)- and (S)-(+)-linalool, and (E)- and (Z)-β-ocimene, and that each species produces 6–20 compounds. Transformation of scent profiles by using chord-normalized expected species shared distances and analysis of the data with nonmetric multidimensional scaling showed that floral volatiles of cooccurring Glochidion species can be distinguished by relative chemical composition, especially that of minor compounds. The bioassay with pollinators of Glochidion lanceolatum and Glochidion ruburm further indicated that Epicephala moths are capable of discriminating their hosts by using floral odor. The results suggest that the floral scent of Glochidion is one of the important key signals that mediate the encounters of the species-specific partners in the GlochidionEpicephala mutualism.  相似文献   

4.
We compared the chemical compositions of the osmeterial secretions of fourth and fifth (last) instars of eight swallowtail species of the tribe Papilionini. Four species (Papilio demoleus, P. polytes, P. paris, and P. macilentus) are Asian Rutaceae-feeding swallowtails. The other four (Chilasa epicydes, C. agestor, P. troilus, and P. glaucus) represent more distant clades within the Papilionini and species with larval hosts in other plant families. We conducted a quantitative analysis for six species, but only qualitative analysis for P. glaucus and C. agestor. In all eight species, regardless of larval host plant, secretions of the fourth instar principally consisted of mono- and sesquiterpene hydrocarbons, whereas those of the fifth instar comprised aliphatic acids and their esters. Consistent with earlier findings, our results suggest that this “heterogeneous” pattern of osmeterial chemistry, not seen in other tribes, may characterize the Papilionini as a whole. Unlike those of most Papilio species, the fourth and fifth instars of Chilasa species resemble each other in body coloration. Thus, the heterogeneous osmeterial pattern is not necessarily associated with color change in papilionid larvae. The major terpenoids identified in fourth instar larval secretions from the six species were α-pinene, sabinene, β-myrcene, limonene, β-phellandrene, (Z)-β-ocimene, (E)-β-ocimene, p-mentha-1,4(8)-diene, β-elemene, β-caryophyllene, (E)-β-farnesene, (3Z,6E)-α-farnesene, (Z)-α-bisabolene, germacrene-A, (E)-α-bisabolene, and germacrene-B. The profiles for individual species differed both qualitatively and quantitatively from one another, and certain species also secreted methyl 3-hydroxy-n-butyrate and oxygenated sesquiterpenes in relatively large proportions. Secretions from fifth instars were composed of varying proportions of isobutyric, 2-methylbutyric, and acetic acids, and methyl and ethyl (minor) esters of both isobutyric and 2-methylbutyric acids. The heterogeneity of osmeterial chemistry in the tribe Papilionini may represent fine-tuning of chemical defense in response to shifting predation pressures as the larvae age and grow.  相似文献   

5.
Antennal Responses to Floral Scents in the Butterfly Heliconius melpomene   总被引:2,自引:0,他引:2  
Floral scent, together with visual floral cues, are important signals to adult butterflies searching for food-rewarding plants. To identify which compounds in a floral scent are more attractive and, thus, of biological importance to foraging butterflies, we applied electrophysiological methods. Antennal responses of male and female adults of the tropical butterfly Heliconius melpomene L. (Lepidoptera: Nymphalidae: Heliconiinae) to individual compounds of natural floral scents and synthetic floral scent mixtures were investigated using gas chromatography–electroantennographic detection (GC-EAD). The natural floral scents included those of two tropical plant species, Lantana camaraL. (Verbenaceae) and Warszewiczia coccinea (Vahl) Kl. (Rubiaceae), and two temperate species, Buddleja davidii Franchet (Loganiaceae) and Cirsium arvense (L.) Scop. (Asteraceae). The two synthetic floral scent mixtures contained many of the compounds found in the natural scents, but all in equal quantities. Compounds both present in relatively high abundance in the floral scents and detected exclusively in the floral parts of the plant, such as linalool, linalool oxide (furanoid) I and II, oxoisophoroneoxide, and phenylacetaldehyde, elicited the strongest antennal responses, suggesting that they may reflect adaptations by the plant to attract butterfly pollinators. However, other compounds also present in high abundance in the floral scent, but detected in the vegetative as well as floral plant parts, either elicited strong antennal responses, such as trans--ocimene and benzaldehyde, or failed to elicit antennal responses, such as the sesquiterpenes -caryophyllene and -humulene from L. camara. The most volatile monoterpene alkenes in the synthetic scent mixtures elicited only low or no responses. Furthermore, the overall antennal responses were stronger in females than in males. The findings suggest that several floral scent volatiles, especially those of exclusively floral origin, are of high biological significance to H. melpomene butterflies. These include compounds of different biosynthetic origins belonging to the benzenoids, monoterpenoids, and irregular terpenoids.  相似文献   

6.
During development of figs on Ficus hispida, only the female floral stage is receptive to its pollinator Ceratosolen solmsi marchali. After this stage, the quantity of fig odor decreases. The effects of F. hispida volatiles from receptive figs (figs at the female floral stage, when they are pollinated) and interfloral figs (between the female floral and male floral stages) on their pollinator were studied, together with responses to compounds present in the odor. Odors emitted by both receptive and interfloral figs were attractive to the pollinator. However, wasps preferred the odor of receptive figs to that of interfloral figs even though the quantity of interfloral volatiles increased. Three monoterpenes that included linalool (major constitutent) and two minor compounds limonene and β-pinene from the receptive fig volatiles were used to test the pollinator responses. The levoisomer and racemic mixtures of linalool were attractive to the pollinator at high doses, but the dextroisomer was neutral. (±)-Limonene and (−)-β-pinene at high doses were even less attractive to the pollinator than clean air and were neutral at low doses, while (R)-(+)-, (S)-(−)-limonene were neutral at all doses. In blend tests, all four mixtures of (±)-linalool or (S)-(−)-linalool combined with (±)-limonene or (−)-β-pinene attracted C. solmsi marchali when administered at high doses. (R)-(+)-linalool and (−)-β-pinene enhanced the attractiveness of (S)-(−)-linalool to the pollinator, while enantiomers of limonene did not. These results suggest that both quality and quantity of fig volatiles regulate C. solmsi marchali response and that quality is the main host-finding and floral stage-distinguishing cue for the pollinator. Synergistic effects of some compounds may play a role in enhancing attractiveness of the active compounds.  相似文献   

7.
Gilbert (1976) suggested that male-contributed odors of mated females of Heliconius erato could enforce monogamy. We investigated the pheromone system of a relative, Heliconius melpomene, using chemical analysis, behavioral experiments, and feeding experiments with labeled biosynthetic pheromone precursors. The abdominal scent glands of males contained a complex odor bouquet, consisting of the volatile compound (E)-β-ocimene together with some trace components and a less volatile matrix made up predominately of esters of common C16- and C18-fatty acids with the alcohols ethanol, 2-propanol, 1-butanol, isobutanol, 1-hexanol, and (Z)-3-hexenol. This bouquet is formed during the first days after eclosion, and transferred during copulation to the females. Virgin female scent glands do not contain these compounds. The transfer of ocimene and the esters was shown by analysis of butterflies of both sexes before and after copulation. Additional proof was obtained by males fed with labeled D-13C6– glucose. They produced 13C-labeled ocimene and transferred it to females during copulation. Behavioral tests with ocimene applied to unmated females showed its repellency to males. The esters did not show such activity, but they moderated the evaporation rate of ocimene. Our investigation showed that β-ocimene is an antiaphrodisiac pheromone of H. melpomene.  相似文献   

8.
The volatiles emitted by fresh whole flowers and isolated flower organs of male, female, and hermaphrodite carob trees (Ceratonia siliqua L.; Leguminosae) were analyzed by headspace solid-phase microextraction followed by capillary gas chromatography and mass spectrometry. The headspace of carob flowers is mainly constituted of high amounts of monoterpenes and sesquiterpenes, and more than 25 compounds were identified. The gender and cultivar affected both the qualitative profile and the relative abundances of the volatiles of whole flowers and isolated floral organs. Linalool and its derivatives (cis-linalool furan oxide, 2,2,6-trimethyl-3-keto-6-vinyltetrahydropyran, cis-linalool pyran oxide, and trans-linalool furan oxide), α-pinene, and α-farnesene were the dominant volatiles. Female flowers had a higher diversity of volatile compounds than males and hermaphrodites, but a lower abundance of the major ones. Similarly, the floral scent of female flowers of cv. Mulata had a higher content of volatiles but a lower abundance of the major ones, when compared to cv. Galhosa. In each of the three gender types of flowers, the nectary disks seemed to be the major source of volatiles.  相似文献   

9.
Previous laboratory studies have shown that the mirid Lygus hesperus is attracted to volatiles emitted from alfalfa; feeding damage increases the amounts of several of these volatiles, and visual cues can enhance attraction further. The present study tested single plant volatiles in electrophysiological and behavioral trials with L. hesperus. Electroantennogram (EAG) analyses indicated that antennae responded to most plant volatiles included in the test, and that when gender differences were observed, males usually were more responsive than females. Antennal responses to the alcohols ((E)-3-hexenol, (Z)-3-hexenol, 1-hexanol), the acetate (E)-2-hexenyl acetate, and the aldehyde (E)-2-hexenal were among the strongest. Moderate responses were observed for (E)-β-ocimene, (E,E)-α-farnesene, (±)-linalool, and methyl salicylate. A dose dependent response was not observed for several terpenes (β-myrcene, β-caryophyllene, (+)-limonene, or both (R)-(+)- and (S)-(−)-α-pinenes). EAG responses, however, were not always consistent with behavioral assays. In Y-tube bioassays, males did not exhibit a positive behavioral response to any of the compounds tested. Instead, males were repelled by (E)-2-hexenyl acetate, (±)-linalool, (E,E)-α-farnesene, and methyl salicylate. In contrast, female L. hesperus moved upwind towards (R)-(+)-α-pinene, (E)-β-ocimene, and (E,E)-α-farnesene, and showed a negative response towards (Z)-3-hexen-1-ol, (S)-(−)-α-pinene, and methyl salicylate. This study emphasizes the use of multiple approaches to better understand host plant finding in the generalist herbivore L. hesperus.  相似文献   

10.
The subsocial tenebrionid Parastizopus armaticeps Pér. is parasitized by the closely related Eremostibes opacus Koch (Coleoptera: Tenebrionidae). We found that the pygidial defensive secretions of both species are similar and contain a mixture of 1,4-benzoquinones, 1-alkenes, and monoterpene hydrocarbons. The 1-alkenes are dominated by 1-undecene, with admixtures of 1-tridecene in both species and 1-pentadecene in P. armaticeps only. Methyl- and ethyl-1,4-benzoquinone are the major quinones of the secretions of both species. The monoterpene fractions consist of (−)-α-pinene, (−)-camphene, sabinene, (−)-β-pinene, and (−)-limonene. Volatiles trapped with Porapak Q at the entrance to the breeding burrows of P. armaticeps were identified as components of the defensive secretion. However, in contrast to the secretion, the 1,4-benzoquinones were almost completely absent in the volatiles. Bioassays investigating attraction showed that the cleptoparasite E. opacus was drawn to the monoterpene hydrocarbons, produced by P. armaticeps, and deterred by the 1,4-benzoquinones. The 1-alkenes had no effect. Among the monoterpenes, only (−)-camphene was attractive to E. opacus. This is one of the rare cases of chemical exploitation of defensive allomones, and the first based on odor homology. We have drawn an evolutionary scenario including various functional changes in the defensive secretion compounds, leading to the kairomonal exploitation.  相似文献   

11.
Plants emit a wide range of volatile organic compounds in response to damage by herbivores, and many of the compounds have been shown to attract the natural enemies of insect herbivores or serve for inter- and intra-plant communication. Most studies have focused on volatile emission in the laboratory while little is known about emission patterns in the field. We studied the emission of volatiles by Trifolium pratense (red clover) under both laboratory and field conditions. The emission of 24 compounds was quantified in the laboratory, of which eight showed increased emission rates after herbivory by Spodoptera littoralis caterpillars, including (E)-β-ocimene, the most abundant compound, (Z)-β-ocimene, linalool, (E)-β-caryophyllene, (E,E)-α-farnesene, 4,8-dimethyl-1,3,7-nonatriene (DMNT), 1-octen-3-ol, and methyl salicylate (MeSA). While most of these compounds have been reported as herbivore-induced volatiles from a wide range of plant taxa, 1-octen-3-ol seems to be a characteristic volatile of legumes. In the field, T. pratense plants with varying herbivore damage growing in established grassland communities emitted only 13 detectable compounds, and the correlation between herbivore damage and volatile release was more variable than in the laboratory. For example, the emission of (E)-β-ocimene, (Z)-β-ocimene, and DMNT actually declined with damage, while decanal exhibited increased emission with increasing herbivory. Elevated light and temperature increased the emission of many compounds, but the differences in light and temperature conditions between the laboratory and the field could not account for the differences in emission profiles. Our results indicate that the release of volatiles from T. pratense plants in the field is likely to be influenced by additional biotic and abiotic factors not measured in this study. The elucidation of these factors may be important in understanding the physiological and ecological functions of volatiles in plants.  相似文献   

12.
Volatiles from hosts, non-hosts, interspecifics, and conspecifics of the Asian larch bark beetle, Ips subelongatus Motsch., were analyzed using both gas chromatographic-electroantennographic detection (GC-EAD) and gas chromatography/mass spectrometry (GC-MS) techniques, and field trapping bioassays in Inner Mongolia, China. GC-EAD experiments indicated that I. subelongatus antennae (both sexes) strongly responded not only to the major male-produced conspecific components, ipsenol, and ipsdienol, but also to other bark beetle compounds (cis-verbenol and verbenone), host monoterpenes (α-pinene, β-pinene, and para-cymene) from Larix sp. logs, and non-host leaf (green leaf volatiles and geranyl acetone) and bark (C8-alcohols and trans-conophthorin) volatiles. Repeatable EAD responses were also found to two compounds from hindgut extracts that are undetectable by GC. One of these minor compounds was identified as amitinol. Field trapping experiments showed that the EAD-active, major male-hindgut component, racemic ipsenol, is the only individual compound that significantly attracted both sexes of I. subelongatus, whereas all other compounds, including previously reported pheromone components of European Ips cembrae, ipsdienol and 3-methyl-3-buten-1-ol, were unattractive. Ipsdienol, 3-methyl-3-buten-1-ol, or their binary blend had no synergistic or antagonistic effects on I. subelongatus attraction when combined with ipsenol, whereas cis-verbenol (a synomone) and verbenone (the antiaggregation semiochemical) inhibited its attraction to the ipsenol-containing attractive blend. A mixture of three EAD-active host monoterpenes, α-pinene, β-pinene, and para-cymene, was unattractive, but interrupted the pheromone response of I. subelongatus. Geranyl acetone, one of the strong EAD-active non-host volatiles also significantly reduced the number of I. subelongatus captured in traps baited with ipsenol-containing attractive blend. Our results add support to the recent phylogenetic finding that European and Asian larch bark beetles should be regarded as two distinct species: I. cembrae infecting larch in Europe and I. subelongatus infesting larch in Asia.  相似文献   

13.
Sawfly larvae of the tribe Phymatocerini (Hymenoptera: Tenthredinidae), which are specialized on toxic plants in the orders Liliales and Ranunculales, exude a droplet of deterrent hemolymph upon attack by a predator. We investigated whether secondary plant metabolites from Ranunculaceae leaves are sequestered by phymatocerine Monophadnus species, i.e., Monophadnus alpicola feeding upon Pulsatilla alpina and Monophadnus monticola feeding upon Ranunculus lanuginosus. Moreover, two undescribed Monophadnus species were studied: species A collected from Helleborus foetidus and species B collected from Helleborus viridis. Comparative high-performance liquid chromatographic–photodiode array detection–electrospray ionization–mass spectrometric analyses of plant leaf and insect hemolymph extracts revealed the presence of furostanol saponins in all samples. Larvae of species A and B actively sequestered (25R)-26-[(α-l-rhamnopyranosyl)oxy]-22α-methoxyfurost-5-en-3β-yl O-β-d-glucopyranosyl-(1→3)-O-[6-acetyl-β-d-glucopyranosyl-(1→3)]-O-β-d-glucopyranoside (compound 1). This compound occurred at a 65- to 200-fold higher concentration in the hemolymph of the two species (1.6 and 17.5 μmol/g FW, respectively) than in their host plant (0.008 and 0.268 μmol/g FW, respectively). In M. monticola, compound 1 was found at a concentration (1.2 μmol/g FW) similar to that in the host plant (1.36 μmol/g FW). The compound could not be detected consistently in M. alpicola larvae where, however, a related saponin may be present. Additional furostanol saponins were found in H. foetidus and H. viridis, but not in the two Monophadnus species feeding on them, indicating that sequestration of compound 1 is a highly specific process. In laboratory bioassays, crude hemolymph of three Monophadnus species showed a significant feeding deterrent activity against a potential predator, Myrmica rubra ant workers. Isolated furostanol saponins were also active against the ants, at a concentration range similar to that found in the hemolymph. Thus, these compounds seem to play a major role for chemical defense of Monophadnus larvae, although other plant secondary metabolites (glycosylated ecdysteroids) were also detected in their hemolymph. Physiological and ecological implications of the sequestered furostanol saponins are discussed. Dedicated to the memory of Professor Ivano Morelli (1940–2005)  相似文献   

14.
The aim of this study was to gain further insight into β-carotene thermal degradation in oils. Multiresponse modeling was applied to experimental high-performance liquid chromatography–diode array detection (HPLC–DAD) data (trans-, 13-cis-, and 9-cis-β-carotene concentrations) during the heat treatments (120–180 °C) of two β-carotene-enriched oils, i.e., palm olein and copra. The test of different reaction schemes showed that β-carotene isomerization reactions were dominant and reversible. The resulting cis isomers and trans-β-carotene simultaneously underwent oxidation and cleavage reactions at the same rate constant. From the kinetic analysis, it appeared that—contrary to oxidation and cleavage reactions—isomerization rate constants did not follow the Arrhenius law. However, the isomerization equilibrium constant increased with temperature, favoring isomer production, particularly 9-cis-β-carotene. Its production was shown to be concomitant with oxidation and cleavage reactions, indicating that 9-cis-β-carotene could be a good degradation indicator during oil storage or processing.  相似文献   

15.
Carnivorous arthropods use volatile infochemicals emitted from prey-infested plants in their foraging behavior. Although several volatile components are common among plant species, the compositions differ among prey–plant complexes. Studies showed that the predatory mite Neoseiulus womersleyi is attracted only to previously experienced plant volatiles. In this study, we identified the attractant components in prey-induced plant volatiles of two prey–plant complexes. N. womersleyi reared on Tetranychus kanzawai-infested tea leaves showed significant preference for a mixture of three synthetic compounds [mimics of the T. kanzawai-induced tea leaves volatiles: (E)-β-ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and (E,E)-α-farnesene] at a level comparable to that for T. kanzawai-induced tea plant volatiles. However, mixtures lacking any of these compounds did not attract the predatory mites. Likewise, N. womersleyi reared on T. urticae-infested kidney bean plants showed a significant preference for a mixture of four synthetic compounds [mimics of the T. urticae-induced kidney bean volatiles: DMNT, methyl salicylate (MeSA), β-caryophyllene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene] at a level comparable to that for T. urticae-induced kidney bean volatiles. The absence of any of the four compounds resulted in no attraction. These results indicate that N. womersleyi can use at least four volatile components to identify prey-infested plants.  相似文献   

16.
The acceptance of Solanum surattenses as a host plant for the larvae of Manduca sexta was explained by the presence of feeding stimulants in foliage. Bioassay-guided fractionation of plant extracts resulted in the isolation of a highly active compound (1), which was identified as a furostan derivative {26-O-β-d-glucopyranosyl-(25R)-furosta-5-ene-3-β-yl-O-α-l-rhamnopyranosyl-(1″-2′)-O-α-l-rhamnopyranosyl-(1′″-3″)-O-β-d-glucopyranoside}. This compound has the same steroidal core substructure as that in a stimulant (indioside D) previously identified from potato foliage. However, the sugar substituents attached to the core are different.  相似文献   

17.
Tan JW  Dong ZJ  Liu JK 《Lipids》2003,38(1):81-84
Five cerebrosides (1–5), including three new ones named cortenuamide A (1), cortenuamide B (2), and cortenuamide C (3), were isolated from the fruiting bodies of the basid-iomycete Cortinarius tenuipes. The structures of those compounds were elucidated as (4E,8E)-N-d-2′-hydroxytetracosanoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8-sphingadienine (1), (4E,8E)-N-d-2′-hydroxytricosanoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8 sphingadienine (2), (4E, 8E)-N-d-2′-hydroxydocosanoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8-sphingadienine (3), (4E, 8E)-N-d-2′-hydroxyoctadecanoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8-sphingadienine (4), and (4E, 8E)-N-d-2′-hydroxypalmitoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8-sphingadienine (5) by spectral and chemical methods.  相似文献   

18.
Zhan ZJ  Yue JM 《Lipids》2003,38(12):1299-1303
Iwo new compounds (1,2) were isolated from the ethanolic extract of the leaves of Premna microphylla, together with five known compounds. The structures of compounds 1 and 2 were elucidated as (2S,3S,4R,11E)-2-[(2R)-2-hydroxytetracosanoylamino]-11-octadecene-1,3,4-triol (1) and 1-O(9Z,12Z, 15Z-octadecatrienoyl)-3-O-[β-d-galactopyranosyl-(1→6)-O-β-d-galactopyranosyl-(1→6)-α-d-galactopyranosyl] glycerol (2) by means of spectroscopic and chemical methods.  相似文献   

19.
The tea weevil, Myllocerinus aurolineatus (Voss) (Coleoptera: Curculionidae), is a leaf-feeding pest of Camellia sinensis (O.Ktze.) with aggregative behaviors that can seriously reduce tea yield and quality. Although herbivore-induced host plant volatiles have been shown to attract conspecific individuals of some beetle pests, especially members of the Chrysomelidae family, little is known about the volatiles emitted from tea plants infested by M. aurolineatus adults and their roles in mediating interactions between conspecifics. The results of behavioral bioassays revealed that volatile compounds emitted from tea plants infested by M. aurolineatus were attractive to conspecific weevils. Volatile analyses showed that infestations dramatically increased the emission of volatiles, (Z)-3-hexenal, (Z)-3-hexenol, (E)-β-ocimene, linalool, phenylethyl alcohol, benzyl nitrile, indole, (E, E)-α-farnesene, (E)-nerolidol, and 31 other compounds. Among the induced volatiles, 12 chemicals, including γ-terpinene, benzyl alcohol, (Z)-3-hexenyl acetate, myrcene, benzaldehyde, (Z)-3-hexenal, and (E, E)-α-farnesene, elicited antennal responses from both sexes of the herbivore, whereas (E)-β-ocimene elicited antennal responses only from males. Using a Y-tube olfactometer, we found that six of the 13 chemicals, γ-terpinene, benzyl alcohol, (Z)-3-hexenyl acetate, myrcene, benzaldehyde, and (Z)-3-hexenal, were attractive to both males and females; two chemicals, (E/Z)-β-ocimene and (E, E)-α-farnesene, were attractive only to males; and four chemicals, (E)-4,8-dimethyl-1,3,7-nonatriene, phenylethyl alcohol, linalool, and (Z)-3-hexenol, were attractive only to females. The findings provide new insights into the interactions between tea plants and their herbivores, and may help scientists develop new strategies for controlling the herbivore.  相似文献   

20.
Oleoresin of rosa mosqueta (Rosa rubiginosa) was encapsulated with starch or gelatin by spray-drying. Stability of the powders was studied at 25, 40, and 55°C in the dark. Degradation of trans-rubixanthin, trans-lycopene, and trans-β-carotene followed a pseudo-first-order kinetic model for both encapsulating agents. The gelatin matrix provided a greater protective effect over the main carotenoid pigments, as shown by the lower degradation rate constants and the longer half-life values at 21°C. In contrast, the carotenoid pigments showed the same degradation rate in starch, but trans-β-carotene was more stable in gelatin. The kinetic compensation effect obtained according to the calculated thermodynamic parameters suggests that the carotenoids are degraded by the same mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号