首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metalorganic chemical vapor deposition CdTe passivation of HgCdTe   总被引:1,自引:0,他引:1  
CdTe epilayers are grown by metalorganic chemical vapor deposition (MOCVD) on bulk HgCdTe crystals with x ~ 0.22 grown by the traveling heater method (THM). The THM HgCdTe substrates are (111) oriented and the CdTe is grown on the Te face. The metalorganic sources are DMCd and DETe, and the growth is performed at subatmospheric pressure. Ultraviolet (UV) photon-assisted hydrogen radicals pretreatment plays a dominant role in the electrical properties of the resulting heterostructures. The requirements of a good passivation for HgCdTe photodiodes vis-a-vis the passivation features of CdTe/HgCdTe heterostructures are discussed. The effect of valence band offset and interface charges on the band diagrams of p-isotype CdTe/HgCdTe heterostructures, for typical doping levels of the bulk HgCdTe substrates and the MOCVD grown CdTe, is presented. Electrical properties of the CdTe/HgCdTe passivation are determined by capacitance-voltage and current-voltage characteristics of metal-insulator-semiconductor test devices, where the MOCVD CdTe is the insulator. It is found that the HgCdTe surface is strongly inverted and the interface charge density is of the order of 1012cm2 when the CdTe epilayer is grown without the UV pretreatment. With the in-situ UV photon-assisted hydrogen radicals pretreatment, the HgCdTe surface is accumulated and the interface charge density is -4. 1011 cm-2.  相似文献   

2.
A compositionally graded CdTe-Hg1−xCdxTe interface was created by deposition of CdTe on p-HgCdTe and subsequent annealing. The compositionally graded layer between CdTe and HgCdTe was formed by an interdiffusion process and was used for passivation. The composition gradient (Δx) in the interfacial region and the width of the graded region were tailored by adopting a suitable annealing procedure. The effect of process conditions on the interfacial profile and photoelectric properties such as lifetime and surface recombination velocity was studied in detail. Surface recombination velocity of the p-HgCdTe could be reduced to the level of 3,000 cm/s at 77 K, which represents very good passivation characteristics. The passivation layer formed by this method can be used for the fabrication of high performance and stable modern infrared detectors. Thus, a passivation process is developed, which is simple, effective, reproducible, and compatible with the HgCdTe device fabrication and packaging processes.  相似文献   

3.
采用宽频带导纳测试系统研究了Hg0.66Cd0.34Te-CdTe异质结构和Al-半绝缘CdTe-Hg0.66Cd0.34Te结构样品的变频导纳特性,分析了不同结构样吕的测试结果,表明:异质结HgCdTe表面空穴积累,CdTe表面空穴耗尽,界面处的势垒使载流子局限于HgCdTe体内,样品的光伏响应光谱在2970cm^-1和3650cm^-1处各有一个响应峰,前者对应于界面HgCdTe的本征光伏效庆  相似文献   

4.
In this study, CdTe epilayers were grown by metalorganic chemical vapor deposition on epitaxial HgCdTe with the purpose of developing suitable passivation for HgCdTe photodiodes. Two types of CdTe layers were investigated. One was grown directly,in situ, immediately following the growth of HgCdTe. The second type of CdTe was grown indirectly, on top of previously grown epitaxial HgCdTe samples. In this case, the surface of the HgCdTe was exposed to ambient atmosphere, and a surface cleaning procedure was applied. The material and structural properties of the CdTe/HgCdTe interfaces were investigated using secondary ion mass spectroscopy, Auger electron spectroscopy, Rutherford back scattering, and x-ray double crystal diffractometry techniques. Electrical properties of the CdTe/HgCdTe heterostructure were determined by capacitance-voltage (C-V) characterization of Schottky barrier devices and metal insulator semiconductor devices. Also, a preliminary current-voltage characterization of n+ p photodiodes was performed. A theoretical model suitable for analysis of graded heterojunction devices was used for interpretation of C-V measurements.  相似文献   

5.
The microstructure of p-n device structures grown by liquid-phase epitaxy (LPE) on CdZnTe substrates has been evaluated using transmission electron microscopy (TEM). The devices consisted of thick (∼21-μm) n-type layers and thin (∼1.6-μm) p-type layers, with final CdTe (∼0.5 μm) passivation layers. Initial observations revealed small defects, both within the n-type layer (doped with 8×1014/cm3 of In) and also within the p-type layer but at a much reduced level. These defects were not visible, however, in cross-sectional samples prepared by ion milling with the sample held at liquid nitrogen temperature. Only isolated growth defects were observed in samples having low indium doping levels (2×1014/cm3). The CdTe passivation layers were generally columnar and polycrystalline, and interfaces with the p-type HgCdTe layers were uneven. No obvious structural changes were apparent in the region of the CdTe/HgCdTe interfaces as a result of annealing at 250°C.  相似文献   

6.
7.
Cadmium telluride (CdTe) is being widely used for passivating the HgCdTe p-n diode junction. Instead of CdTe, we tried a compositionally graded HgCdTe as a passivation layer that was formed by annealing an HgCdTe p-n junction in a Cd/Hg atmosphere. During annealing, Cd diffuses into HgCdTe from the Cd vapor, while Hg diffuses out from HgCdTe, forming compositionally graded HgCdTe at the surface. The Cd mole fraction at the surface was constant regardless of the annealing temperature in the range of 250–350°C. Capacitance versus voltage (C-V) curves for p-type HgCdTe that were passivated with compositionally graded HgCdTe formed by Cd/Hg annealing at 260°C showed a smaller flat-band voltage than the one passivated by thermally deposited CdTe, indicative of the better quality of the passivation. A long-wave infrared (LWIR) HgCdTe p-n junction diode passivated by compositionally graded HgCdTe showed about a one order of magnitude smaller RdA value than the one passivated by thermally deposited CdTe, confirming the effectiveness of the compositionally graded HgCdTe as a passivant.  相似文献   

8.
Metalorganic chemical vapor depositon (MOCVD) in situ growth of p-on-n junctions for long wavelength infrared (LWIR) and medium wavelength infrared (MWIR) photodiodes is reported. The interdiffused multilayer process was used for the growth of the HgCdTe junctions on CdTe and CdZnTe substrates. The n-type region was grown undoped while the p-type layer was arsenic doped using tertiarybutylarsine. Following a low temperature anneal in Hg vapor, carrier densities of (0.2-2) x 1015 cm3 and mobilities of (0.7-1.2) x 105 cm2/V-s were obtained for n-type LWIR (x ~ 0.22) layers at 80K. Carrier lifetimes of these layers at 80 K are ~l-2 μs. For the p-type region arsenic doping was controlled in the range of (1-20) x 1016 cm-3. Arsenic doping levels in the junctions were determined by calibrated secondary ion mass spectroscopy depth profile measurements. Composition and doping of the p-on-n heterojunctions could be independently controlled so that the electrical junction could be located deeper than the change in the composition. The graded composition region between the narrow and wide (x = 0.28-0.30) bandgap regions are 1–2 μm depending on the growth temperature. Backside-illuminated variable-area circular mesa photodiode arrays were fabricated on the grown junctions as well as on ion implanted n-on-p MWIR junctions. The spectral responses are classical in shape. Quantum efficiencies at 80K are 42–77% for devices without anti-reflection coating and with cutoff wavelengths of 4.8–11.0 μm. Quantum efficiencies are independent of reverse bias voltage and do not decrease strongly at lower temperatures indicating that valence band barrier effects are not present. 80K RoA of 15.9 Ω-cm2 was obtained for an array with 11.0 μm cutoff. Detailed measurements of the characteristics of the MOCVD in situ grown and implanted photodiodes are reported.  相似文献   

9.
P-on-n mercury cadmium telluride (MCT) heterostructures grown by MOCVD with As and In as n- and p-type dopants, respectively, are examined by measuring the Seebeck and Hall coefficients between 20 and 320K. The results are analyzed regarding doping and composition of the layers by least squares fitting the experimental profiles with the calculated temperature dependencies. The electron and hole densities of the layers are calculated taking into account Fermi-Dirac statistics, a nonparabolic conduction band, a parabolic valence band, a discrete acceptor level, and fully ionized donors. For the Seebeck coefficient, the relation we previously showed to be valid for p-type MCT1 is used. This relation relies on the thermoelectric effect in a temperature gradient resulting from the diffusion of nondegenerate carriers scattered by LO-phonons. It also fits the observed thermoelectric properties of n-type MCT in a wide temperature range. The doping and structural parameters determined from the thermoelectric measurements agreed very well with As and In profiles obtained from secondary ion mass spectroscopy measurements and the data obtained from analyses of infrared transmission measurements.  相似文献   

10.
Characterization of CdTe for HgCdTe surface passivation   总被引:2,自引:0,他引:2  
The objectives of this work are to study the physical and chemical structure of CdTe films using secondary ion mass spectrometry (SIMS) and atomic force miroscopy (AFM) and to demonstrate the usefulness of these analytical techniques in determining the characteristics of CdTe-passivation films deposited by different techniques on HgCdTe material. Three key aspects of CdTe passivation of HgCdTe are addressed by different analytical tools: a) morphological microstructure of CdTe films examined by atomic force microscopy; b) compositional profile across the interface determined by Matrix (Te)—SIMS technique; c) concentration of various impurities across the CdTe/HgCdTe structure profiled by secondary ion-mass spectrometry.  相似文献   

11.
Bake stability of long-wavelength infrared HgCdTe photodiodes   总被引:2,自引:0,他引:2  
The bake stability was examined for HgCdTe wafers and photodiodes with CdTe surface passivation deposited by thermal evaporation. Electrical and electrooptical measurements were performed on various long-wavelength infrared HgCdTe photodiodes prior to and after a ten-day vacuum bakeout at 80°C, similar to conditions used for preparation of tactical dewar assemblies. It was found that the bakeout process generated additional defects at the CdTe/ HgCdTe interface and degraded photodiode parameters such as zero bias impedance, dark current, and photocurrent. Annealing at 220°C under a Hg vapor pressure following the CdTe deposition suppressed the interface defect generation process during bakeout and stabilized HgCdTe photodiode performance.  相似文献   

12.
利用 Ar 束溅射沉积技术实现了 Cd Te薄膜的低温生长 ,利用电化学方法进行了 Hg Cd Te表面自身阳极氧化膜的生长 ,利用生长的 Cd Te介质膜和 Hg Cd Te表面自身阳极氧化膜对 n- Hg Cd Te光导器件进行了表面钝化 .对两种器件的电阻、各项性能指标进行了测量分析 ,实验表明得到的 Cd Te/ Hg Cd Te界面质量已达到器件实用化水平 .  相似文献   

13.
Proposes an easy and reproducible vapor-phase photo surface treatment method to improve the device performance of the Hg0.8 Cd0.2Te photoconductive detector. We explore the effect of surface passivation on the electrical and optical properties of the HgCdTe photoconductor. Experimental results, including surface mobility, surface carrier concentration, metal-insulator-semiconductor leakage current, 1/f noise voltage spectrum, the 1/f knee frequency, responsivity Rλ, and specific detectivity D* for stacked photo surface treatment and ZnS or CdTe passivation layers are presented. These data are all directly related to the quality of the interface between the passivation layer and the HgCdTe substrate. We found that, by inserting a photo native oxide layer, we can shift the 1/f knee frequency, reduce the noise power spectrum, and achieve a lower surface recombination velocity S. A higher D* can also be achieved. It was also found that HgCdTe photoconductors passivated with stacked layers show improved interface properties compared to the photoconductors passivated only with a single ZnS or CdTe layer  相似文献   

14.
Passivant-Hg1−xCdxTe interface has been studied for the CdTe and anodic oxide (AO) passivants. The former passivation process yields five times lower surface recombination velocity than the latter process. Temperature dependence of surface recombination velocity of the CdTe/n-HgCdTe and AO/n-HgCdTe interface is analyzed. Activation energy of the surface traps for CdTe and AO-passivated wafers are estimated to be in the range of 7–10 meV. These levels are understood to be arising from Hg vacancies at the HgCdTe surface. Fixed charge density for CdTe/n-HgCdTe interface measured by CV technique is 5×1010 cm−2, which is comparable to the epitaxially grown CdTe films. An order of magnitude improvement in responsivity and a factor of 4 increase in specific detectivity (D*) is achieved by CdTe passivation over AO passivation. This study has been conducted on photoconductive detectors to qualify the CdTe passivation process, with an ultimate aim to use it for the passivation of p-on-n and n-on-p HgCdTe photodiodes.  相似文献   

15.
采用分子束外延(MBE)技术在表面生长碲化镉(CdTe)介质膜的p型碲镉汞(HgCdTe)材料,并通过离子注入区的光刻、暴露HgCdTe表面的窗口腐蚀、注入阻挡层硫化锌(ZnS)的生长、形成p-n结的B+注入、注入阻挡层的去除、绝缘介质膜ZnS的生长、金属化和铟柱列阵的制备等工艺,得到了原位CdTe钝化的n+-on-p...  相似文献   

16.
A compositionally graded surface layer has been created for the passivation of Hg1-xCdxTe photodiodes. The graded CdTe-Hg1-xCdxTe interface was created by deposition of CdTe and subsequent annealing. It was found that the composition gradient and width of the graded region could be tailored by adopting a suitable annealing procedure. The effect of grading on the interface electrical properties and photoelectrical properties was studied by X-ray photoelectron spectroscopy (XPS), photoconductive decay, and C-V measurements. Insulator fixed-charge density and interface-trap density could be reduced to 3times1010 cm -2 and 2times1010 cm-2middoteV-1, respectively, by creating a graded interfacial composition. The interface conditions so engineered led to a low surface recombination velocity ~3000 cm/s. A direct correlation has been established between the process conditions, interfacial composition, and the electrical/photoelectrical properties of the CdTe-Hg1-xCdxTe heterostructures. The passivation layer formed by this method is shown to be suitable for the fabrication of high-performance infrared detectors  相似文献   

17.
通过介质膜ZnS、CdTe薄膜材料的Ar^ 束溅射沉积研究,结合HgCdTe器件工艺,成功制备了以ZnS、CdTe双层介质膜为绝缘层的HgCdTe MIS器件;通过对器件的C-V特性实验分析,获得了CdTe/HgCdTe界面电学特性参数。实验表明:溅射沉积介质膜CdTe ZnS对HgCdTe的表面钝化已经可以满足HgCdTe红外焦麦面器件表面钝化的各项要求。  相似文献   

18.
采用CdTe/ZnS复合钝化技术对长波HgCdTe薄膜进行表面钝化,并对钝化膜生长工艺进行了改进。采用不同钝化工艺分别制备了MIS器件和二极管器件,并进行了SEM、C-V和I-V表征分析,研究了HgCdTe/钝化层之间的界面特性及其对器件性能的影响。结果表明,钝化工艺改进后所生长的CdTe薄膜更为致密且无大的孔洞,CdTe/HgCdTe界面晶格结构有序度获得改善;采用改进的钝化工艺制备的MIS器件C-V测试曲线呈现高频特性,界面固定电荷面密度从改进前的1.671011 cm-2下降至5.691010 cm-2;采用常规钝化工艺制备的二极管器件在较高反向偏压下出现较大的表面沟道漏电流,新工艺制备的器件表面漏电现象获得了有效抑制。  相似文献   

19.
A microstructural study of HgCdTe/CdTe/GaAs(211)B and CdTe/GaAs(211)B heterostructures grown using molecular beam epitaxy (MBE) was carried out using transmission electron microscopy and small-probe microanalysis. High-quality MBE-grown CdTe on GaAs(211)B substrates was demonstrated to be a viable composite substrate platform for HgCdTe growth. In addition, analysis of interfacial misfit dislocations and residual strain showed that the CdTe/GaAs interface was fully relaxed except in localized regions where GaAs surface polishing had caused small pits. In the case of HgCdTe/CdTe/GaAs(211)B, the use of thin HgTe buffer layers between HgCdTe and CdTe for improving the HgCdTe crystal quality was also investigated.  相似文献   

20.
采用不同工艺生长了CdTe/ZnS复合钝化层,制备了相应的长波HgCdTe栅控二极管器件并进行了不同条件下I-V测试分析.结果表明,标准工艺制备的器件界面存在较高面密度极性为正的固定电荷,在较高的反偏下形成较大的表面沟道漏电流,对器件性能具有重要的影响.通过钝化膜生长工艺的改进有效减小了器件界面固定电荷面密度,使HgCdTe表面从弱反型状态逐渐向平带状态转变,表面效应得到有效抑制,器件反向特性获得显著改善.此外,基于最优的工艺条件制备的器件界面态陷阱数量得到大幅降低,器件稳定性增强;同时器件R_0A随栅压未发生明显地变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号