共查询到15条相似文献,搜索用时 62 毫秒
1.
挖掘数据流滑动时间窗口内Top-K频繁模式 总被引:1,自引:0,他引:1
陈辉 《小型微型计算机系统》2010,31(6)
由于数据流滑动时间窗口中流数据包含模式的支持度是动态变化的,很难给出一个合适的支持度门限来挖掘数据流滑动时间窗口内的频繁模式.在研究数据流滑动时间窗口内流数据变化特点的基础上,论文提出了一种挖掘数据流滑动时间窗口内Top-k频繁模式的方法,该方法能够在保证模式挖掘误差基础上快速删除窗口内不频繁模式信息,保留重要的模式信息,并能按照支持度降序输出Top-k频繁模式.仿真实验结果表明,该算法具有较好的效率和正确性,并优于其它同类算法. 相似文献
2.
挖掘数据流最近时间窗口内频繁模式 总被引:1,自引:0,他引:1
由于流数据的流动性与连续性,传统的频繁模式挖掘算法不能直接应用于数据流频繁模式挖掘.挖掘数据流上最近的频繁模式算法使用模式树RFP-tree增量维护数据流上最近的频繁模式,且仅需单次扫描流数据;另外,保守计算策略保证模式挖掘的正确性.仿真试验结果显示,该算法的效率优于其它同类算法. 相似文献
3.
挖掘滑动窗口中的数据流频繁模式 总被引:2,自引:0,他引:2
随着数据流应用的不断增多,数据流环境下的数据挖掘技术受到了越来越多的关注.文章结合数据流的特点,提出一种新的基于滑动窗口的频繁模式挖掘算法:DSFPM.算法分块挖掘数据流,在内存中维持一个用于保存所有潜在的频繁模式信息的存储结构DSFPM-Tree,并在各个基本窗口进入滑动窗口后动态更新该存储结构.算法仅处理和保存各个基本窗口的临界频繁闭合项集,极大地提高了时间和空间效率.实验结果表明,该算法具有良好的性能. 相似文献
4.
作为数据流挖掘的一个重要研究问题,滑动窗口下的数据流频繁模式挖掘近年来得到了广泛应用和研究。已有的算法大多要对数据流中所有的数据都进行处理,而现实中用户往往只关注事物的某些方面,由此借鉴MFI-TransSW算法,提出了一种基于事务型滑动窗口的算法BSW-Filter(Bit Sliding Window with Filter)。算法采用比特序列实现滑动窗口操作,同时由于增加了频繁项的筛选,减少了所需保存的数据项个数,从而减小了内存使用和提升处理速度。算法的空间复杂度与滑动窗口大小以及数据流取值范围无关,特别适用于周期较长数据范围广的数据挖掘。分析和实验验证了该算法的可行性和有效性。 相似文献
5.
基于时间衰减模型的数据流频繁模式挖掘 总被引:1,自引:0,他引:1
频繁模式挖掘是数据流挖掘中的重要研究课题. 针对数据流的时效性和流中心的偏移性特点, 提出了界标窗口模型与时间衰减模型相结合的数据流频繁模式挖掘算法. 该算法通过动态构建全局模式树, 利用时间指数衰减函数对模式树中各模式的支持数进行统计, 以此刻画界标窗口内模式的频繁程度; 进而, 为有效降低空间开销, 设计了剪枝阈值函数, 用于对预期难以成长为频繁的模式及时从全局树中剪除. 本文对出现在算法中的重要参数和阈值进行了深入分析. 一系列实验表明, 与现有同类算法MSW相比, 该算法挖掘精度高(平均超过90%), 内存开销小, 速度上可以满足高速数据流的处理要求, 且可以适应不同事务数量、不同事务平均长度和不同最大潜在频繁模式平均长度的数据流频繁模式挖掘. 相似文献
6.
滑动窗口是一种对最近一段时间内的数据进行挖掘的有效的技术,本文提出一种基于滑动窗口的流数据频繁项挖掘算法.算法采用了链表队列策略大大简化了算法,提高了挖掘的效率.对于给定的阈值S、误差ε和窗口长度n,算法可以检测在窗口内频度超过Sn的数据流频繁项,且使误差在εn以内.算法的空间复杂度为O(ε-1),对每个数据项的处理和查询时间均为O(1).在此基础上,我们还将该算法进行了扩展,可以通过参数的变化得到不同的流数据频繁项挖掘算法,使得算法的时间和空间复杂度之间得到调节.通过大量的实验证明,本文算法比其它类似算法具有更好的精度以及时间和空间效率. 相似文献
7.
8.
因树型结构的良好表达能力,在互联网中传输的信息流越来越多以树型结构形式存储。但由于流式数据的时效性,隐含在数据流中的知识会随着时间的推移发生改变。针对数据流场景下挖掘最近时间段内的频繁子树模式的问题,提出了一种滑动窗口模型下挖掘频繁子树模式算法——SWMiner算法,用于挖掘数据流下任意时刻窗口下所有的频繁子树模式。SWMiner算法使用基于前缀树的结构来压缩存储生成的树模式,并且使用trie merging机制有效地更新子树模式的支持度。实验结果表明,SWMiner算法在滑动窗口模型中的性能优于目前现有的常用算法,能有效地挖掘最近时间段内的频繁树模式。 相似文献
9.
10.
11.
基于滑动窗口的数据流闭合频繁模式的挖掘 总被引:11,自引:1,他引:11
频繁闭合模式集惟一确定频繁模式完全集并且数量小得多,然而,如何挖掘滑动窗口中的频繁闭合模式集是一个很大的挑战.根据数据流的特点,提出了一种发现滑动窗口中频繁闭合模式的新方法DS_CFI. DS_CFI算法将滑动窗口分割为若干个基本窗口,以基本窗口为更新单位,利用已有的频繁闭合模式挖掘算法计算每个基本窗口的潜在频繁闭合项集,将它们及其子集存储到一种新的数据结构DSCFI_tree中,DSCFI_tree能够增量更新,利用DSCFI_tree可以快速地挖掘滑动窗口中的所有频繁闭合模式.最后,通过实验验证了这种方法的有效性. 相似文献
12.
基于概率衰减窗口模型的不确定数据流频繁模式挖掘 总被引:2,自引:0,他引:2
考虑到不确定数据流的不确定性,设计了一种新的概率频繁模式树PFP-tree和基于该树的概率频繁模式挖掘方法PFP-growth.PFP-growth使用事务性不确定数据流及概率衰减窗口模型,通过计算各概率数据项的期望支持度以发现概率频繁模式,其主要特点有:考虑到窗口内不同时间到达数据项的贡献度不同,采用概率衰减窗口模型计算期望支持度,以提高模式挖掘准确度;设置数据项索引表和事务索引表,以加快频繁模式树检索速度;通过剪枝删除不可能成为频繁模式的结点,以降低模式树的存储及检索开销;对每个结点都设立一个事务概率信息链表,以支持数据项在不同事务中具有不同概率的情形.实验结果表明,PFP-growth在保证挖掘模式准确度的前提下,在处理时间和内存空间等方面都具有较好的性能. 相似文献
13.
频繁项集挖掘是数据流挖掘中的一个热点问题.提出了一种新的数据流频繁闭项集挖掘算法MFCI-SW.首先设计了两个新的数据结构:频繁闭项集表FCIL和频繁闭合模式树MFCI-SW-Tree,在此基础上以滑动窗口中的基本窗口为更新单位,在每个基本窗口中提取出频繁闭项集的数据项,将其支持度F和窗口序列号K存到FCIL中;然后随着新基本窗口的到来,通过删除频繁闭项集表中K值最小的数据项和插入新数据项完成对FCIL的更新和MFCI-SW-Tree树的裁剪;最后在MFCI-SW-Tree中可以迅速挖掘出满足用户需要的频繁闭项集.实验结果证明了该算法在执行效率上明显优于DS-CFI算法. 相似文献
14.
传统的数据挖掘算法在挖掘频繁项集时会产生大量的冗余项集,影响挖掘效率。为此,提出一种基于矩阵的数据流Top-k频繁项集挖掘算法。引入2个0-1矩阵,即事务矩阵和二项集矩阵。采用事务矩阵表示滑动窗口模型中的事务列表,通过计算每行的支持度得到二项集矩阵。利用二项集矩阵得到候选项集,将事务矩阵中对应的行做逻辑与运算,计算出候选项集的支持度,从而得到Top-k频繁项集。把挖掘的结果存入数据字典中,当用户查询时,能够按支持度降序输出Top-k频繁项集。实验结果表明,该算法在挖掘过程中能避免冗余项集的产生,在保证正确率的前提下具有较高的时间效率。 相似文献
15.
挖掘数据流中的频繁模式 总被引:17,自引:1,他引:17
发现数据流中的频繁项是数据流挖掘中最基本的问题之一.数据流的无限性和流动性使得传统的频繁模式挖掘算法难以适用.针对数据流的特点,在借鉴FP-growth算法的基础上,提出了一种数据流频繁模式挖掘的新方法:FP-DS算法.算法采用数据分段的思想,逐段挖掘频繁项集,用户可以连续在线获得当前的频繁项集,可以有效地挖掘所有的频繁项集,算法尤其适合长频繁项集的挖掘.通过引入误差ε,裁减了大量的非频繁项集,减少了数据的存储量,也能保证整个数据集中项目集支持度误差不超过ε. 分析和实验表明算法有较好的性能. 相似文献