首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The formation of bubbles from an underwater orifice is studied by means of a boundary integral method. Since the bubble process is highly transient the flow field is assumed to be irrotational. A potential-flow boundary-integral formulation is employed to simulate the growth of a bubble from a needle in an unbounded domain and in a tube. The geometry of the problem is axisymmetric in these cases. A good agreement is found between the simulations and the experiment for air bubbles of radii ranging from a few hundred microns to several millimeters in water. A three-dimensional boundary integral method is developed to simulate bubble detachment from a non-vertical needle in an unbounded domain. Numerical instabilities commonly associated with the boundary integral technique are found to be even more severe for the three dimensional case and therefore an artificial damping term is introduced to eliminate these instabilities. Even though the simulations often fail just before the pinchoff point, the results compare favorably with the experiment.  相似文献   

2.
The dual-reciprocity boundary-element method is a very powerful technique for solving general elliptic equations of the type 2u=b. In this method, a series of interpolation functions is used to approximate b in order to convert the associated domain integral, which it is necessary to evaluate in a traditional boundary-element analysis, into boundary integrals only. Hence the choice of interpolation functions has direct effects on the numerical results. According to Partridge and Brebbia, the adoption of a comparatively simple form of interpolation function gives the best results. Unfortunately, when b contains partial derivatives of the unknown function u(x, y), the adoption of such a type of interpolation function inevitably leads to the creation of singularities on all boundary and internal nodes used in a dual-reciprocity boundary-element analysis, as was pointed out by Zhu and Zhang in 1992. To avoid this problem, a functional transformation, which applies only to linear governing equations, can be employed to eliminate these derivative terms and thus to obtain better numerical results. In this paper, two new interpolation functions are proposed and examined; they are proven to be generally applicable and satisfactory.  相似文献   

3.
A general BEM model for structural dynamics is derived by using a symmetric and positive definite variational formulation. The functional employed involves domain displacements and boundary tractions and displacements. These variables are taken to be independent of one another. The boundary variables are expressed in terms of their nodal values while the domain displacement field is approximated by a linear combination of static fundamental solutions. The source point of the latter is located outside the domain. The resolving system is a linear system and for free vibration a classic linear algebraic eigenvalue problem is inferred. The stiffness and mass matrices are symmetric and positive definite and the domain integral, when associated with the inertial term, can be transformed into a boundary integral. Numerical results are presented to prove the efficiency of the method.  相似文献   

4.
为了解决不易获取复杂结构振速声辐射模态和利用其计算复杂结构外辐射声场困难的问题,提出源强声辐射模态分析方法。该方法利用简单源积分公式将结构表面连续的源强分布等效为一组简单源源强分布,利用这组简单源源强分布构造了结构辐射声功率2次型表达式,其2次型系数定义一个辐射阻矩阵,辐射阻矩阵的特征向量就构成了源强声辐射模态,从而实现复杂结构总辐射声功率的解耦。只要获得声辐射模态的展开系数,声场中的声压、质点法向速度等声学量都可由源强声辐射模态叠加得到。球形声源和棱台体声源的分析表明:源强声辐射模态保留了传统的声辐射模态优点,更方便解决复杂结构声辐射问题。  相似文献   

5.
A method based on an integral equation formulation is described for solution of the full potential equation in terms of the velocity field. In addition to the conventional distribution of singularities over the boundaries of field, a field source distribution is added in the flow region in order to represent the non-linear compressibility effect. The unknown source distribution in the field is calculated from the full potential equation by iteratively updating the normal velocity boundary conditions. In order to treat more complex configurations, local transformations provided by higher-order elements are used. Computation time required for integration of the domain is improved by using a domain decomposition. Results of calculations demonstrate substantial improvement in computation time and are in good agreement with independent results.  相似文献   

6.
基于时域声辐射模态的结构噪声主动控制研究   总被引:1,自引:2,他引:1  
以简支矩形板为例,提出了利用时域声辐射模态进行声辐射研究,并从物理和数学意义上对时域声辐射模态进行了解释。研究表明时域声辐射模态既与时间无关,也互相独立,使得计算和控制声功率得以简化。针对瞬时声功率主要由第一阶辐射模态的声功率所决定的特点,在时域里进行结构噪声的主动控制研究,通过抵消第一阶辐射模态的声功率使得总的声功率得以有效降低。在此基础上,建立基于最小二乘算法的自适应反馈控制系统,进行仿真计算,结果证明了主动控制策略是有效的。  相似文献   

7.
The problem of determining the axisymmetric time-independent temperature and thermoelastic displacement and stress fields in a nonhomogeneous material is solved numerically by using a dual-reciprocity boundary element technique. Interpolating functions that are bounded in the solution domain but that are in relatively simple elementary forms for easy computation are constructed for treating the domain integrals in the dual-reciprocity boundary element formulation. The proposed numerical approach is successfully applied to solve several specific problems.  相似文献   

8.
运动介质中奇异边界元积分式的精确求解   总被引:1,自引:1,他引:0       下载免费PDF全文
采用边界元方法求解与运动介质相关声学问题时,难点之一是如何精确计算场点与源点重合所导致的奇异积分式。论文提出一种将具有奇性的单元面积分式拆分为奇性和非奇性积分部分分别进行计算的新方法。对奇性积分部分,经过严格的数学推导给出解析解;而对非奇性积分部分则通过高斯积分法处理。新方法可有效地提高边界元计算精度和效率,对运动介质中的有关声学问题的边界元数值计算具有重要意义。  相似文献   

9.
Simulations of acoustic wavefields in inhomogeneous media are always performed on finite numerical domains. If contrasts actually extend over the domain boundaries of the numerical volume, unwanted, non-physical reflections from the boundaries will occur. One technique to suppress these reflections is to attenuate them in a locally reflectionless absorbing boundary layer enclosing the spatial computational domain, a perfectly matched layer (PML). This technique is commonly applied in time-domain simulation methods like finite element methods or finite-difference time-domain, but has not been applied to the integral equation method. In this paper, a PML formulation for the three-dimensional frequency-domain integral-equation-based acoustic scattering problem is derived. Three-dimensional acoustic scattering configurations are used to test the PML formulation. The results demonstrate that strong attenuation (a factor of 200 in amplitude) of the scattered pressure field is achieved for thin layers with a thickness of less than a wavelength, and that the PMLs themselves are virtually reflectionless. In addition, it is shown that the integral equation method, both with and without PMLs, accurately reproduces pressure fields by comparing the obtained results with analytical solutions.  相似文献   

10.
振动板辐射噪声的结构主动控制   总被引:3,自引:0,他引:3  
吴卫国  王贵成  王志 《振动与冲击》2006,25(5):10-13,17
以平板为例,在时域里建立结构一声辐射模型,采用时域瑞利积分构造辐射算子,给出时域声辐射模态的计算公式;研究表明这些辐射模态能独立的辐射声功率,因此可实现对某一阶辐射模态进行单独控制而不影响其它各阶;并且时域辐射模态的一个重要特点是振动结构辐射的声功率主要由第一阶辐射模态的声功率所决定,在此基础上运用状态空间法进行平板结构辐射噪声的结构主动控制研究,并通过数值计算对控制效果进行了验证。  相似文献   

11.
以三维圆柱为研究对象,使用Lighthill声类比法研究其绕流发声问题。第一步进行流场计算,分别用大涡模拟(LES)、脱体涡模拟(DES)和瞬态雷诺平均法(URANS)模拟声源区流场,通过对比流场压力和涡量等参数,据此选取合适的流场仿真方法;第二步用基于Lighthill方程FW-H积分法和边界元法预报远场直发声,通过和Revell试验结果比较,分析各种计算方法差别。研究表明:进行流场仿真时LES计算结果最好,IDDES法在保证计算精度条件下能有效减少流场网格数量,URANS法误差很大;进行辐射噪声预报时,FW-H积分法和边界元法基本相同。  相似文献   

12.
A new boundary element formulation has been developed for two- and three-dimensional acoustic eigenfrequency analyses. The formulation is based on the well known method of constructing a solution of a differential equation in terms of a complementary function and particular integral. An advanced isoparametric implementation with automatic error control in the integration is used. A number of realistic examples of application to automotive acoustic cavities are described.  相似文献   

13.
A boundary integral vector potential formulation has been developed to evaluate eddy-current interactions with three-dimensional finite cracks in conductors. The approach is compared with an electric field integral equation method also used for solving crack problems in eddy-current nondestructive evaluation. An important advantage of the vector potential integral formulation is that the kernel has a weak singularity, but a drawback is that two unknown functions must be found on the crack surface. One of these functions, the current dipole density, represents the effect of the crack in terms of an induced source, and the other function is a solution of the two-dimensional Laplace equation. By contrast, the source density alone is needed for a complete solution of the electric field integral equation. In order to determine the surface Laplacian for finite cracks of arbitrary shape, a general numerical solution utilizing the boundary element technique is introduced. Numerical predictions of the eddy-current probe response to a crack give good agreement with experimental measurements, supporting the validity of the formulation  相似文献   

14.
A fast multipole boundary element method (FMBEM) extended by an adaptive mesh refinement algorithm for solving acoustic problems in three‐dimensional space is presented in this paper. The Collocation method is used, and the Burton–Miller formulation is employed to overcome the fictitious eigenfrequencies arising for exterior domain problems. Because of the application of the combined integral equation, the developed FMBEM is feasible for all positive wave numbers even up to high frequencies. In order to evaluate the hypersingular integral resulting from the Burton–Miller formulation of the boundary integral equation, an integration technique for arbitrary element order is applied. The fast multipole method combined with an arbitrary order h‐p mesh refinement strategy enables accurate computation of large‐scale systems. Numerical examples substantiate the high accuracy attainable by the developed FMBEM, while requiring only moderate computational effort at the same time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
齿轮箱是广泛应用的工程机械零部件,准确地模拟其辐射声场对后续的降噪优化设计有着重要作用。边界元方法非常适合分析此类无限域下的声辐射问题。但传统边界元方法有着计算效率低、内存占用高的缺点。该研究发展了宽频的快速多极子边界元方法,并运用该方法计算了齿轮箱在特定频率下的场点声压以及辐射声场。通过对比商用软件的分析结果,验证了所提快速边界元方法的准确性。此外,运用多核并行计算方法,对计算量较大的扫频分析进行加速计算,最终快速、准确地获取了齿轮箱辐射声场的扫频结果。  相似文献   

16.
An integral equation field-panel scheme for solving the full-potential equation for compressible flows with and without shocks is presented. The full-potential equation is written in the form of the Poisson's equation. Compressibility is treated as non-homogeneity. The integral equation solution in terms of velocity field is obtained by Green's theorem. The solution consists of wing (or a general body) surface integral term(s) of vorticity/source distribution(s), wake surface integral term(s) of free-vortex sheet(s), a volume integral term of compressibility over a small limited domain around the source of disturbance, and a shock surface integral term of source distributions for the shock-fitting purpose. Solutions are obtained through an iterative procedure. Instead of using a grid (field-panel) refinement procedure, a shock-fitting technique is used to fit the shock. The present scheme is applied to non-lifting flows around both sharp and round leading edge rectangular wings at high-subsonic and transonic flow conditions.  相似文献   

17.
This paper describes two hybrid methods coupling finite formulation of electromagnetic fields (FFEF) in a bounded domain to integral boundary conditions taking into account far field conditions. The two hybrid techniques use different boundary conditions: the first formulation is based on Green's function applied to magnetization source inside bounded domain while the other one is based on a boundary-element method on its external surface. Details about the coupling terms are given and handling of different magnetization sources is described, including the fictitious magnetization sources coming from nonlinear solutions. The proposed methods are validated versus different benchmark cases. Comparisons between the two techniques have been performed using different criteria (accuracy and convergence, memory requirements, etc.).  相似文献   

18.
The objective of the work presented in this paper is the development of a computational capability for recreating the vibration of a source from acoustic field data. The formulation is based on the indirect variational boundary element method (IVBEM). The vibration of the source is computed from transfer functions defined between the field points, where the acoustic pressure of the original field is prescribed, and the surface of the source. The IVBEM is employed for deriving the transfer functions. The capability to account for the presence of obstacles in the field adjacent to the vibrating sources is included in the source reconstruction process. Treatment of irregular frequencies is included in the IVBEM formulation employed in this work and the reconstruction of the source can be achieved for all radiation conditions. A singular value decomposition (SVD) solver is integrated with the IVBEM computations in order to evaluate the vibration of the source from the transfer functions and the acoustic field data. An algorithm that identifies the optimum field points where the acoustic pressure of the original field must be prescribed in order to accomplish the most efficient source reconstruction is also developed. The optimum field points are selected from a set of prescribed candidate points. The selection of the optimum points is based on the geometric characteristics of the source, the frequency of analysis, the locations of the candidate points, and the properties of the medium. There is no need to have information about the acoustic field in order to identify the optimum field points. Several validation and application cases are presented.  相似文献   

19.
A method is developed for computing the magnetic field from a circular or noncircular cylindrical magnetic source. A Fourier series expansion is introduced which yields an alternative to the more familiar spherical harmonic solution, Elliptic integral solution, or Bessel function solution. This alternate formulation coupled with a method called charge simulation allows one to compute the external magnetic field from an arbitrary magnetic source in terms of a toroidal expansion which is valid on any finite hypothetical external observation cylinder. In other words, the magnetic scalar potential or the magnetic field intensity is computed on a exterior cylinder which encloses the magnetic source. Also, one can compute an equivalent multipole distribution of the real magnetic source valid for points close to the circular cylindrical boundary where the more familiar spherical multipole distribution is not valid. This method can also be used to accurately compute the far field where a finite-element formulation is known to be inaccurate  相似文献   

20.
子波分析在声辐射和声散射中的应用   总被引:1,自引:0,他引:1  
文章提出将子波分析用于求解声学中的边界积分方程,能提高现有边界元方法解决工程问题的能力。在子波分析于声辐射和声散射的应用研究中,提出了把积分核函数用级数展开,建立频率响应函数计算的频率迭代技术,大大提高了频率响应函数的计算效率。讨论了子波分析在声学工程数值计算中的研究前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号