首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jian Liang Li  Dang Sheng Xiong   《Wear》2008,265(3-4):533-539
Solid lubricating materials are necessary for development of new generation gas turbine engines. Nickel-based self-lubricating composites with graphite and molybdenum disulfide as lubricant were prepared by powder metallurgy (P/M) method. Their tribological properties were tested by a MG-2000 high-temperature tribometer from room temperature to 600 °C. The structure of the composite was analyzed by XRD and worn surface morphologies were observed by optical microscope. The effects of counterface materials on tribological behavior of composites were investigated. It was found that chromium sulfide and tungsten carbide were formed in the composite by adding molybdenum disulfide and graphite, which were responsible for low-friction and high wear-resistance at elevated temperatures, respectively. The average friction coefficients (0.14–0.27) and wear rates (1.0–3.5 × 10−6 mm3/(N m)) were obtained for Ni–Cr–W–Fe–C–MoS2 composite when rubbed against silicon nitride from room temperature to 600 °C due to a synergetic lubricating action of graphite and molybdenum disulfide. The optimum combination of Ni–Cr–W–Fe–C–MoS2/Ni–Cr–W–Al–Ti–C showed lower friction than other counter pairs. The graphite played the main role of lubrication at room temperature, while sulfides were responsible for low friction at high temperature.  相似文献   

2.
The layered Mn+1ACn ternary carbides – MAX phases – Ta2AlC, Ti2AlC, Cr2AlC and Ti3SiC2 were tested under dry sliding conditions against alumina at 550 °C and 3 N load (for a stress of ≈0.08 MPa) using a pin-on-disk tribometer. Ta2AlC and Ti2AlC exhibited low specific wear rates, SWRs, (≤1 × 10−6 mm3/N m), while the coefficients of friction, μ, were 0.9 and 0.6, respectively. At 0.4, μ of Ti3SiC2 was the lowest measured, but the SWR, at ≈2 × 10−4 mm3/N m, was high. With a μ of 0.44 and a SWR of 6 × 10−5 mm3/N m the Cr2AlC sample was in between. No visible wear of Al2O3 counterparts was observed in all the tribocouples. Tribofilms, which were mainly comprised of X-ray amorphous oxides of the M and A elements and, in some cases, unoxidized grains of the corresponding MAX phases, were formed on the contact surfaces. The correlations between observed tribological properties and tribofilm characteristics are discussed.  相似文献   

3.
The mechanical and tribological properties of sintered 316L stainless steel impregnated with molybdenum disulfide (MoS2) were investigated. Tests were carried out at room temperature for two specific ranges of PV value (1.1 and 1.8 MPa m/s). The results prove that the friction coefficient and the wear are strongly influenced by the addition level of MoS2.

In this paper, MoS2 powder was mixed with 316L powder before being processed via compacting and sintering steps. The microstructure, hardness, tensile strength and elongation at breaking point of the sintered specimens were evaluated. The friction and wear properties of the materials were examined by a partial plain bearing wear test rig under dry conditions at room temperature and in air. Although some of mechanical properties of the composite decreased with increasing MoS2 amount, the MoS2 was very effective in reducing the friction and wear of the composites. Particularly, the sintered 316L–15% MoS2 materials at 1.1 PV value showed a reduction of friction coefficient by approximately 20–25% when compared to the sintered 316L specimen without addition of MoS2. In addition, wear of specimen with addition of MoS2 was also reduced to some extent (5–10% weight loss reduction) at this specific PV value.  相似文献   


4.
T. J. Joyce  A. Unsworth 《Wear》2001,250(1-12):199-205
A new design of finger wear simulator has been manufactured. The simulator is a dual cycle machine, interspersing dynamic flexion–extension motion, where the loads were 10–15 N, with periods of a static 100 N ‘pinch’ load. Also, a two-piece finger prosthesis has been designed and manufactured from silane cross-linked polyethylene. Using the simulator, a comparison of the wear of the cross-linked polyethylene prosthesis was undertaken, with Ringer solution, distilled water and dilute bovine serum as the lubricants. Each test was run at 37°C and included a control prosthesis to account for lubricant uptake. All prostheses came from the same batch, having a gel content of 87%. In total, testing exceeded 27 million cycles. With bovine serum, the total wear factor for the prosthesis was 0.07×10−6 mm3/N m. With Ringer solution it was 0.98×10−6 mm3/N m and with distilled water the wear factor was 0.60×10−6 mm3/N m. This order of results matched that found with pin on plate wear tests using these same three lubricants. The lower wear found with bovine serum may have been due to the positive boundary lubricating effects of the proteins within the serum. Lubricant uptake was greater and more significant in the bovine serum test.  相似文献   

5.
A two-piece, silane cross-linked polyethylene (XLPE) finger prosthesis has been developed. To further the knowledge of the wear of XLPE against itself, a number of ‘pin-on-plate’ wear tests were undertaken, under different conditions of lubrication. These were distilled water, bovine serum and dry conditions. A second group of tests were then carried out, in which multi-directional motion was applied to the test pins. All tests had XLPE pins loaded at 40 N rubbing against XLPE plates. All the XLPE came from the same batch.

In all tests, pin wear was much less than plate wear. Under reciprocation only, the least wear was found when bovine serum was the lubricant (k=0.6×10−6 mm3/N m) and the maximum wear was when distilled water was the lubricant (k=5.8×10−6 mm3/N m). When multi-directional motion was applied to the test pins, increased wear occurred under lubrication with bovine serum (k=3.4×10−6 mm3/N m). Surprisingly, wear decreased when distilled water was used (k=0.7×10−6 mm3/N m), yet wear factors remained similar in the ‘dry’ test (k=0.7×10−6 mm3/N m). The dry tests had remarkably low wear.  相似文献   


6.
T. Polcar  N.M.G. Parreira  A. Cavaleiro   《Wear》2008,265(3-4):319-326
Transition metal nitrides exhibit excellent mechanical properties (hardness and Young's modulus), high melting point, good chemical stability and high electrical conductivity. However, tungsten nitrides still stand aside of the main attention. In our previous study, tungsten nitride coatings with different nitrogen content showed excellent wear resistance at room temperature. Nevertheless, many engineering applications require good tribological properties at elevated temperature. Thus, the present study is focused on the tribological behaviour (friction coefficient and wear rate) of tungsten nitride coatings at temperature up to 600 °C.

The structure, hardness, friction and wear of tungsten nitride coatings with nitrogen content in the range 30–58 at.% prepared by dc reactive magnetron sputtering were investigated. The tribological tests were performed on a pin-on-disc tribometer in terrestrial atmosphere with Al2O3 balls as sliding partner. The coating wear rate was negligible up to 200 °C exhibiting a decreasing tendency; however, the wear dramatically increased at higher temperatures. The coating peeled off after the test at 600 °C, which is connected with the oxidation of the coating.  相似文献   


7.
Friction and wear tests between a stationary block and a rotating ring under lubrication with molybdenum disulphide (MoS2) were carried out at room temperature at a sliding distance of 500 m. Silicon nitride and cemented carbide blocks were pressed against a bearing steel ring, silicon nitride-bearing steel and cemented carbide-bearing steel pairs, by a load of 1600 N. The effect of molybdenum disulphide upon the coefficient of friction and the wear of the steel ring was discussed for both pairs in comparison with mineral oil lubricants. Molybdenum disulphide was more effective in reducing the coefficient of friction and the wear of the ring than the oil lubricants. Various mechanical pretreatment for forming MoS2 film on the ring surface prior to the sliding tests were also considered. The mechanical pretreatment enabled the sliding test with the low friction coefficient even without lubrication over the sliding distance of 500 m. In general, the coefficient of friction and wear loss of the steel ring were smaller in the silicon nitride-bearing steel pair than in the cemented carbide-bearing steel pair.  相似文献   

8.
Jianliang Li  Dangsheng Xiong 《Wear》2009,266(1-2):360-367
Nickel-based graphite-containing composites were prepared by powder metallurgy method. Their mechanical properties at room temperature and friction and wear properties from room temperature to 600 °C were investigated by a pin-on-disk tribometer with alumina, silicon nitride and nickel-based alloy as counterfaces. The effects of graphite addition amount, temperature, load, sliding speed and counterface materials on the tribological properties were discussed. The micro-structure and worn surface morphologies were analyzed by scanning electron microscope (SEM) attached with energy dispersive spectroscopy (EDS). The results show that the composites are mainly consisted of nickel-based solid solution, free graphite and carbide formed during hot pressing. The friction and wear properties of composites are all improved by adding 6–12 wt.% graphite while the anti-bending and tensile strength as well as hardness decrease after adding graphite. The friction coefficients from room temperature to 600 °C decrease with the increase of load, sliding speed while the wear rates increase with the increasing temperature, sliding speed. The lower friction coefficients and wear rates are obtained when the composite rubs against nickel-based alloy containing molybdenum disulfide. Friction coefficients of graphite-containing composites from room temperature to 600 °C are about 0.4 while wear rates are in the magnitude of 10?5 mm3/(N m). At high temperature, the graphite is not effective in lubrication due to the oxidation and the shield of ‘glaze’ layer formed by compacting back-transferred wear particles. EDS analysis of worn surface shows that the oxides of nickel and molybdenum play the main role of lubrication instead of graphite at the temperature above 400 °C.  相似文献   

9.
The solid lubricant that is coated on a flat surface is easily removed during friction. Surface texture dimples, which act as reservoirs of solid lubricant, can prolong the wear life of solid lubricant films. We textured silver-containing nickel-based alloys by a pulse laser and filled the micro-dimples with molybdenum disulfide powders. The tribological properties of the alloys were tested by rubbing against alloyed steel on a ring-on-disk tribometer at temperatures ranging from room temperature to 600°C . After laser surface texturing, the friction coefficients of the silver-containing nickel-based alloy smeared with molybdenum disulfide powders were reduced at temperatures ranging from room temperature to 400°C. With increasing dimple density, the wear life of the MoS2 film increased while the wear rate of the nickel-based alloy decreased. The wear life of the textured surface with a dimple density of 11.2% exceeded 10,000 m at room temperature. We conclude that molybdenum disulfide and its oxides stored in the micro-dimples play a role in lubrication at room temperature and high temperatures, respectively.  相似文献   

10.
The recent years have witnessed an increasing usage of high-strength steels as structural reinforcements and in energy-absorbing systems in automobile applications due to their favourable high-strength-to-weight ratios. Owing to poor formability, complex-shaped high-strength steel components are invariably produced through hot-metal forming. The high-strength steel sheets are in some instances used with an Al–Si-coating with a view to prevent scaling of components during hot-metal forming. However, friction and wear characteristics of Al–Si-coated high-strength steel during interaction with different tool steels have not yet been investigated. With this in view, friction and wear behaviours of different tool steels sliding against Al–Si-coated high-strength steel at elevated temperatures have been investigated by using a high-temperature version of the Optimol SRV reciprocating friction and wear tester at temperatures of 40, 400 and 800 °C. In these studies both temperature ramp tests with continuously increasing temperature from 40 to 800 °C and constant temperature tests at 40, 400 and 800 °C, have been conducted. The results have shown that both the friction and wear of tool steel/Al–Si-coated high-strength steel pairs are temperature dependent. Friction decreased with increasing temperature whereas wear of the tool steel increased with temperature. On the other hand, the Al–Si-coated high-strength steel showed significantly lower wear rates at 800 °C as compared to those at 40 and 400 °C. The Al–Si-coated surface undergoes some interesting morphological changes when exposed to elevated temperatures and these changes may affect the friction and wear characteristics. The mechanisms of these changes and their influence on the tribological process are unclear and further studies are necessary to fully explain these mechanisms.  相似文献   

11.
J. F.  C. X. 《Wear》2000,240(1-2):180-185
Electroless-plated Ni-based alloy coatings, Ni, Ni–Co and Ni–Mo coatings with thickness less than 5 μm were deposited on surfaces of plasma-sprayed Cr3C2–NiCr coating. The tribological properties of these electroless-plated coatings against the as-sprayed Cr3C2–NiCr coating as sliding pairs were investigated with a block-on-ring arrangement in air at room temperature. It was found that all the Ni-based alloy coatings effectively improved the tribological properties of the Cr3C2–NiCr coating. Especially when the Cr3C2–NiCr coatings plated with Ni–Co and Ni–Mo coatings were against the as-sprayed Cr3C2–NiCr coating as sliding pairs, friction coefficients of 0.10 to 0.13 and coefficients wear coefficients less than 10−6 mm3·N−1·m−1 were achieved. Through examination and analysis of the worn surfaces employing scanning electron microscopy and X-ray photoelectron spectrometer, the improvement in tribological properties of the Cr3C2–NiCr coating may be attributed to the transformation of wear mechanism and the formation of CrO3 on the worn surfaces.  相似文献   

12.
M. Shafiei  A.T. Alpas 《Wear》2008,265(3-4):429-438
The sliding speed dependence of the coefficient of friction (COF) and wear rate (W) of a nanocrystalline (nc) Ni with a grain size of 15 ± 3 nm and a hardness of 5.09 ± 0.11 GPa was compared to that of a microcrystalline (mc) Ni with a grain size of 20 ± 5 μm and a hardness of 1.20 ± 0.05 GPa. The sliding wear tests were performed in an argon environment under a constant normal load of 2 N using three different sliding speeds of 0.2 × 10−2, 0.8 × 10−2 and 3.0 × 10−2 m/s. The lesser wear damage in the nc Ni at any given speed was attributed to its higher hardness and its greater elastic depth recovery ratio compared to the mc Ni. The mc Ni's COFs and wear rates were independent of the sliding speed over the relatively small range used. However, the same small increase in sliding speed caused an 86% reduction in the nc Ni's wear rate, from 3.44 × 10−3 to 0.47 × 10−3 mm3/m, and a 31% increase in its COF, from 0.49 ± 0.05 to 0.64 ± 0.06. A modified Archard equation was proposed to predict wear rates of Ni as a function of grain size and sliding speed. Increasing the sliding speed made it increasingly difficult for surface damage by plastic deformation to occur in the nc Ni, because the grain-boundary-induced deformation mechanisms are more difficult to operate at higher strain rates. At the highest speed, the smallest amount of debris was generated, which was not sufficient to form protective tribolayers leading to a high COF value.  相似文献   

13.
A composite material containing silver and molybdenum metals was fabricated by powder metallurgy method with a Ag/Mo molar ratio of 2 : 1 and the sintering temperature is 700°C. Tribological properties, especially the solid lubrication behaviours during oxidation of the composite in air, were considered from room temperature to 600°C. Phase composition, microstructure and thermal behaviour of the composite were analysed before and after tests to investigate the lubrication mechanisms. The friction coefficients of the composite are ~0.7 below 400°C but decrease sharply to ~0.18 above 500°C. Characterisations of this composite indicate that several silver molybdates (Ag2MoO4, Ag2Mo2O7 and Ag2Mo4O13) formed from oxidation of Ag–Mo composite at high temperatures benefit lubrication effects and lead to the decrease of friction coefficients. Formation mechanism of these silver molybdates during oxidation and wear was therefore studied, and a model based on solid reaction processes in the Ag–Mo–O2 system was promoted. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The sliding wear behaviour of high-chromium white cast iron (16.8% Cr) has been examined as a function of silicon and Mischmetal alloy additions (1, 2, 3 and 5% Si and 0.1 and 0.3% Mischmetal). Such additions are known to modify the structure, but there is considerable controversy as to the exact effect. Silicon was found to refine the dendritic structure and increased the eutectic carbide volume fraction. However, for contents above 3%, transformation of the austenitic matrix to pearlite occurred in preference to martensite. Mischmetal additions reduced the austenite dendrite arm spacing, but did not have a significant effect on the carbide structure. The wear behaviour was investigated for each alloy in the as-cast (austenitic matrix) and hardened (martensitic) conditions using a block on ring configuration in pure sliding in the load range 42–238 N for a distance of 70 km against a hardened M2 steel counterface. For low loads (42 and 91 N), all the alloys showed a similar wear rate (3×10−4 to 4×10−4 mm3/m), associated with the formation of a thin (3 μm) oxide film of Fe2O3, the formation of very fine debris and a small depth of deformation below the worn surface (7 μm). For higher loads, wear was a strong function of microstructure, and was associated with a thicker film of the oxides Fe2O3 and Fe3O4 and greater depths of deformation. The iron with 2% silicon exhibited the best performance with a wear rate of 7×10−4 mm3/m and this was attributed to its finer structure and the formation of a thicker oxide film. In contrast, the iron with 5% silicon exhibited the worst performance, with a wear rate of 14×10−4 mm3/m, attributed to the pearlitic matrix. A linear relationship was observed between the depth of carbide fracture and the wear rate. The relationship between microstructure and wear mechanism is discussed.  相似文献   

15.
There is currently much interest in the characterisation of wear debris from different types of artificial hip joints. There have been numerous studies on the wear of UHMWPE in hip joint simulators, but relatively few studies on the wear of alternative materials such as metal-on-metal (MOM) and ceramic-on-ceramic (COC). The aim of this study was to compare the wear volumes and wear debris generated from zirconia ceramic-on-UHMWPE, MOM and COC hip joints under identical conditions in the same hip joint simulator.

All prostheses showed an initial higher ‘bedding in’ wear rate, which was followed by a lower steady state wear rate. The zirconia ceramic-on UHMWPE prostheses showed the highest wear rates (31±4.0 mm3/million cycles), followed by the MOM (1.23±0.5 mm/million cycles), with the COC prostheses showing significantly (P<0.01) lower wear rates at 0.05±0.02 mm3/million cycles. The mode (±95% confidence limits) of the size distribution of the UHMWPE wear debris was 300±200, 30±2.25 nm for the metal particles, and 9±0.5 nm for the ceramic wear particles. The UHMWPE particles were significantly larger (P<0.05) than the metal and ceramic wear particles, and the metal particles were significantly larger (P<0.05) than the ceramic wear particles. A variety of morphologies and sizes were observed for the UHMWPE wear particles, including submicrometer granules and large flakes in excess of 50 μm. However, the wear particles generated in both the MOM and COC articulations were very uniform in size and oval or round in shape.

This investigation has demonstrated substantial differences in volumetric wear. The in vitro wear rates for the zirconia-on-UHMWPE and MOM are comparable with clinical studies and the UHMWPE and metal wear particles were similar to the wear debris isolated from retrieved tissues. However, the alumina/alumina wear rate was lower than some clinical retrieval studies, and the severe wear patterns and micrometer-sized particles described in vivo were not reproduced here.

This study revealed significant differences in the wear volumes and particle sizes from the three different prostheses. In addition, this study has shown that the alternative bearing materials such as MOM and COC may offer a considerable advantage over the more traditional articulations which utilise UHMWPE as a bearing material, both in terms of wear volume and osteolytic potential.  相似文献   


16.
R.N. Rao  S. Das  D.P. Mondal  G. Dixit 《Wear》2009,267(9-10):1688-1695
This paper describes the results of dry sliding wear tests of aluminium alloy (Al–Zn–Mg) and aluminium (Al–Zn–Mg)–10, 15 and 25 wt.% SiCp composite was examined under varying applied pressure (0.2 to 2.0 MPa) at a fixed sliding speed of 3.35 m/s. The sliding wear behaviour was studied using pin-on-disc apparatus against EN32 steel counter surface, giving emphasis on the parameters such as coefficient of friction, rise in temperature, wear and seizure resistance as a function of sliding distance and applied pressure. It was observed that the wear rate of the alloy was noted to be significantly higher than that of the composite and is suppressed further due to addition of silicon carbide particles. The temperature rise near the contacting surfaces and the coefficient of friction followed reversed trend. Detailed studies of wear surfaces and subsurface deformation have been carried out. The wear mechanism was studied through worn surfaces and microscopic examination of the developed wear tracks. The wear mechanism strongly dictated by the formation and stability of oxide layer, mechanically mixed layer (MML) and subsurface deformation and cracking. The overall results indicate that the aluminium alloy–silicon carbide particle composite could be considered as an excellent material where high strength and wear resistance are of prime importance.  相似文献   

17.
K. J. Wahl  D. N. Dunn  I. L. Singer 《Wear》1999,230(2):365-183
Amorphous Pb–Mo–S coatings 200 to 510 nm thick were deposited by dual ion-beam deposition (IBD) onto steel and Si substrates. Coating wear studies were performed using ball-on-flat reciprocating sliding with steel ball counterfaces in dry air. Tests were run between 1 and 100,000 sliding cycles, and wear depths measured by interference microscopy. Morphology and chemistry of the as-deposited coatings and worn surfaces were investigated with optical microscopy, micro-Raman spectroscopy and cross-section high resolution transmission electron microscopy (HRTEM). Pb–Mo–S coatings were found to be quite wear resistant; no more than 25% of the coating thickness was removed by 10,000 sliding cycles. Two wear mechanisms were identified. At the nanometer scale, wear proceeded in a two-part process: transformation of the coating surface to MoS2, then layer-by-layer removal of MoS2. At the micrometer scale, wear occurred by plowing. The long endurance of Pb–Mo–S coatings was attributed to slow wear of the coatings, with lubricant redistribution processes playing a minor role.  相似文献   

18.
In this paper, a bainite/martensite (B/M) dual-phase ductile iron was fabricated by combining alloying and a controlled cooling heat-treatment. The microstructure, the mechanical properties and the wear performance were investigated and discussed. The ductile iron containing 3.2–3.8 wt.% carbon was alloyed with 2.5–3.0 wt.% manganese and 2.5–3.0 wt.% silicon. In general, manganese is no more than 0.7 wt.% and silicon <2.5 wt.% in commercial grade lower-bainite ductile irons. So, manganese contained in the ductile iron in this work is several times higher, and silicon slightly higher. In order to control the phase transition in the ductile iron during the heat-treatment, its continuous cooling transformation (CCT) curve was determined. The controlled cooling heat-treatment process was determined according to the CCT curve, which included three stages. The first stage was water quenching of the sample rapidly from the austenization temperature to a temperature below 350°C in a few minutes. The second stage was heat preservation of the sample from the spraying end temperature to 200°C in 2 h. The last stage was air cooling of the sample from 200°C to RT. According to the analysis using the scanning electron microscope (SEM) and the X-ray diffraction (XRD), the matrix of the ductile iron had a microstructure of bainite, martensite and a little retained austenite. The hardness and impact toughness of the heat-treated ductile iron were HRC 51.5 and 21.7 J/cm2, respectively. The high values of the hardness and toughness were attributed to (1) the refined structure, (2) the presence of B/M dual-phase and (3) the presence of retained austenite. The impact abrasive wear resistance of the B/M ductile iron was observed to be comparable with that of a high chrome cast iron, and twice that of Mn13 steel.  相似文献   

19.
B. Basu  J. Vleugels  O. Van Der Biest 《Wear》2001,250(1-12):631-641
Lubricated fretting tests in water and paraffin oil were performed with a monolithic TiB2, a TiB2-based cermet with 16 vol.% Ni3(Al, Ti) binder, a sialon–TiB2 (60/40) composite and a ZrO2–TiB2 (70/30) composite against ball bearing grade steel. Based on the measured friction and wear data, the ranking of the investigated fretting couples was evaluated. Furthermore, the morphological investigations of the worn surfaces and transfer layers are carried out and the wear mechanisms for the investigated friction couples are elucidated. While fretting in water, experiments revealed that tribochemical reactions, coupled with mild abrasion, played a major role in the wear behavior of the studied material combinations. ZrO2–TiB2 (70/30)/steel wear couple has been found to have the highest fretting wear resistance among the different tribocouples under water lubrication. Under oil lubrication, extensive cracking of the paraffin oil at the fretting contacts, caused by tribodegradation, leads to the deposition of a carbon-rich lubricating layer, which significantly reduced friction and wear of all the investigated tribosystems.  相似文献   

20.
Y. Pauleau  P. Juliet  R. Gras 《Wear》1997,210(1-2):326-332
Silver, calcium fluoride (CaFx with x = 1.85) and chromium-carbon (Cr3C2) thin films were deposited onto various tribological test specimens by sputtering. The friction properties of sputter-deposited Ag and CaFx single layers as well as Ag/CaFx multilayer films were determined by ball-on-disk tribological tests conducted in room air under various experimental conditions. The tribological properties (friction coefficient and wear rate) of sputter-deposited CaFx films were also determined at 500°C by pin-on-disk tribological tests performed with pin specimens made of cobalt-based alloy (alacrite). Chromium-carbon films sputter-deposited onto alacrite disk and counterfaces were found to be of interest for reducing the formation of alacrite wear debris in the wear tracks; thus reduced friction coefficient and wear rate values were obtained. The friction behavior of sputter-deposited CaFx/Cr3C2 thin bilayer structures and plasma-sprayed (PS) chromium carbide/Ag/BaF2-CaF2 eutectic composite coatings (PS-212 type coatings) was investigated by plane-on-plane tribological tests conducted in room air at 500°C and 700°C. The friction performance of solid lubricant thin bilayer films was compared with that of thick PS-212 type coatings similar to coatings developed by NASA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号