首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
钛合金的晶粒尺寸对其超塑性能有着显著影响。采用三维镦拔形变热处理工艺对供货态的TC4合金进行细晶化处理,然后采用恒应变速率法对细晶TC4合金的超塑性进行了研究。结果表明:采用三维镦拔工艺能简单、有效地细化TC4合金的原始组织,平均晶粒尺寸由原始组织的50μm细化至15μm。在变形温度800~950℃,应变速率为2.2×10-4s-1的试验条件下,处理后的TC4合金均表现出良好的超塑性能,最大伸长率达到747%。  相似文献   

2.
变形工艺对TC11钛合金超塑性的影响   总被引:1,自引:0,他引:1  
为了研究TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si)钛合金的超塑性变形行为,采用两种改锻工艺细化坯料原始组织,然后在电子拉伸试验机上分别以恒速、恒应变速率和最大m值法进行拉伸实验.结果表明,TC11钛合金在α+β区通过三维镦拔改锻工艺,可以获得晶粒度为6μm的细晶等轴组织,而在β区拔长改锻的组织为粗大的魏氏组织.在变形温度为900℃的条件下,TC11钛合金通过最大m值超塑变形方式获得了异常高的超塑性,最大伸长率达到2300%;而采用常规的恒应变速率和恒速超塑变形,伸长率分别为1147%和1100%.说明TC11钛合金在α+β区通过三维镦拔改锻细化晶粒后,以最大m值超塑变形是获得较好超塑性的有效方法.  相似文献   

3.
《塑性工程学报》2013,(6):94-97
采用最大m值法,在温度分别为850℃、870℃、900℃下,对改锻前及改锻后的TC4-DT钛合金棒材进行超塑性拉伸实验。实验结果表明,根据最大m值法拉伸试样TC4-DT在870℃的变形温度下,延伸率达到了最大值1240%,表明该类型TC4-DT钛合金的最佳超塑性变形温度在870℃左右;并且改锻后较细晶粒尺寸的TC4-DT棒材的超塑性明显高于改锻前的较粗晶粒组织,延伸率平均提高了一倍;分析显微组织可知,在超塑性拉伸变形中发生了动态再结晶。  相似文献   

4.
研究不同锻造工艺(三火次镦拔、五火次镦拔、五火次镦拔+中间β均匀化处理)对TC4-DT钛合金显微组织和力学性能的影响,对比分析了不同锻造工艺的微观组织和力学性能的关系.结果表明,与常规锻造和常规均匀锻造相比,采用常规均匀锻造+β均匀化处理(C工艺)的组织在普通退火后具有与力学性能的最佳匹配,并且在后续的变形过程中,随着变形量增大,C工艺由于畸变能以及再结晶的作用产生了许多细小的等轴组织,因此采用C工艺具有细化晶粒的作用,对提高合金的整体性能有益.  相似文献   

5.
通过实验对TC4方坯进行多向镦拔,对制备的径锻棒材进行组织和力学性能测试分析。结果表明:多向镦拔能有效细化TC4合金组织晶粒、提高力学性能。随镦拔变形量及次数的增加,α相晶粒逐渐细小、等轴化,2火次75%变形量多向镦拔可获得α相晶粒为5μm;3火次75%变形量多向镦拔变形下,准65mm径锻棒的屈服强度及抗拉强度分别高达940MPa和1015MPa,伸长率为17%。  相似文献   

6.
《锻压技术》2021,46(10):19-24
FGH96是我国第2代粉末冶金高温合金,采用常规锻造工艺进行开坯和成形极为困难,为了探索合理的细晶盘坯制备方法,在900℃的热模温度下,以不同应变速率、变形温度和变形量进行热模锻造实验,研究FGH96粉末冶金高温合金组织的变化规律。结果表明:当以低于γ′相固溶温度锻造时,随着变形温度的升高,显微组织更加均匀,当变形温度超过γ′相固溶温度时,晶粒有长大倾向;合金晶粒度随着变形量的增加而细化,低变形量时组织不均匀,变形量超过30%时能获得较好的细化组织;在1050~1130℃变形温度范围、以大于30%的较大变形量锻造时,晶粒度可以提高3个级别以上;采用大变形镦锻、反复镦拔可获得12级左右的再结晶组织,拉伸强度明显提高,断口特征为沿晶和穿晶混合断裂。  相似文献   

7.
采用轴向多道次镦粗拔长工艺,研究了SIMA法预变形工艺中的锻造比和镦拔道次对100Cr6钢晶粒细化的影响。试验结果表明:随着锻造比和镦拔道次的增加,晶粒的平均直径逐渐减少,晶粒的细化效果越好,在锻造比为2.00,镦拔道次为3次时,试样心部晶粒的平均直径从274.1μm减小到25.0μm,减小了90.9%,试样边部晶粒的平均直径从293.4μm减小到23.1μm,减小了92.1%。;试样边部晶粒的细化效果优于心部晶粒,镦拔道次对试样晶粒的细化效果强于锻造比。研究结果表明,轴向多道次镦粗拔长预变形工艺对晶粒的细化效果显著,镦拔后可以获得晶粒细小的非枝晶坯料,且工艺简单,操作安全,是优良的预变形晶粒细化工艺。  相似文献   

8.
对GH720Li合金棒材开展了不同变形温度和变形量的等温镦粗及热处理试验,采用金相显微镜(OM)观察了各工艺的显微组织。结果表明,一火50%变形过程的动态再结晶不充分,组织保留较多的变形态原始晶粒;两次加热50%+50%变形后得到细晶组织,且随变形温度升高,组织细化程度增加。各锻态组织经固溶热处理后均可得到ASTM 9.0级以上的均匀细晶。两火变形时,中间态变形晶粒在火次间保温过程发生静态再结晶,变形温度1115℃和1130℃时,火次间保温后组织完全细化为等轴细晶,该晶粒在第2火锻后进一步细化至ASTM 12.0级以上。变形温度1100℃时,火次间保温过程静态再结晶不完全,残留的变形晶粒可通过后续累积变形逐步破碎。  相似文献   

9.
利用两种等通道角挤压(ECAP)方法(普通单步ECAP和两步ECAP)制备细晶ZK60合金。采用金相显微镜、扫描电镜、透射电镜和X射线衍射仪对合金的组织和织构进行观察,通过拉伸试验研究不同ECAP方法对合金力学性能的影响。结果表明:与单步ECAP变形相比,两步ECAP变形,由于降低了变形温度,晶粒细化效果更好;经过(240℃,4道次)+(180℃,4道次)两步ECAP变形后,合金晶粒细化至约0.8μm;合金的力学性能与材料的织构密切相关,由于存在织构软化效应,与挤压态相比,经单步ECAP变形后合金的强度有所降低,而伸长率明显提高;但经两步ECAP变形后,由于细晶强化和亚结构强化的作用,合金的强度得到提高。  相似文献   

10.
采用Gleeble热力模拟机分别对平均晶粒直径30μm的热等静压态、10μm的挤压态细晶和3μm的挤压态超细晶FGH96合金进行了等温压缩试验,变形温度为1000~1100℃,应变速率为0.001~0.1s~(-1)。结果表明,在相同变形温度和应变速率下,挤压态合金的应力远小于热等静压态的,随着原始晶粒尺寸减小,FGH96合金的应力呈减小趋势,但在1100℃和0.001s~(-1)变形时,挤压态超细晶的应力略高于挤压态细晶的;应变速率为0.001s~(-1)时,热等静压态组织在1100℃呈现稳定流动特征,应力不随应变的增大而增大,而挤压态细晶组织在1050℃和1100℃均呈现稳态流动特征;应变速率为0.001s~(-1)时,挤压态超细晶组织1050℃应力低于1100℃的,且晶粒组织较1100℃细小均匀,1100℃变形容易形成混晶,组织不易控制。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号