首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an investigation of an ammonia-water absorption cycle for solar refrigeration, airconditioning and heat pump operations at higher heat supply temperatures. The system consists of a solar driven generator, rectifier, condenser, evaporator, absorber and heat exchangers for preheating and subcooling within the system. A steady state thermodynamic cycle analysis based on mass and heat balances along with the state equations for the thermodynamic properties of the ammonia-water mixture has been carried out. A numerical computer simulation of the system with input component temperatures, refrigerant concentration/mass flow rate and effectiveness of the heat exchangers has been made to evaluate the relative heat transfer rates (i.e. coefficients of performance) and the mass flow rates for the cooling/heating modes. It is found that unlike the low generator temperature behaviour the coefficients of performance for both cooling and heating modes are reduced at higher generator temperatures. However, an increase of condenser temperature for each mode of operation improves the performance of the systems at higher generator temperatures. A choice for keeping the absorber temperature equal to/lower than that of the condenser is also predicted at lower/higher generator temperatures, respectively. In general the results are more pronounced for the refrigeration mode than for the heat pump mode and are least effective for the airconditioning mode.  相似文献   

2.
A theoretical analysis of the coefficient of performance COP was undertaken to examine the efficiency characteristics of the monomethylamine–water solutions for a single-stage absorption refrigeration machine, using low generator temperatures (60–80°C), which allows the use of flat plate solar collectors. The thermodynamic analysis considers both, basic and refined cycles. The refined absorption cycle included a sensible heat recover exchanger (that is a solution heat exchanger). The thermal coefficients of performance COPh for the basis cycle and COPSHE for the refined cycle were calculated using the enthalpies at various combinations, at the operating temperatures and concentrations. The flow ratio FR has been calculated as additional optimization parameter. Due to the relative low pressure and the high coefficients of performance, the monomethylamine–water solutions present interesting properties for their application in solar absorption cycles at moderate condenser and absorber temperatures (25–35°C), with temperatures in the evaporator from −10°C to 10°C which are highly usable for food product preservation and for air conditioning in rural areas.  相似文献   

3.
This article describes an experimental investigation to measure performances of a vapor absorption refrigeration system of 1 ton of refrigeration capacity employing tetrafluoro ethane (R134a)/dimethyl formamide (DMF). Plate heat exchangers are used as system components for evaporator, condenser, absorber, generator, and solution heat exchanger. The bubble absorption principle is employed in the absorber. Hot water is used as a heat source to supply heat to the generator. Effects of operating parameters such as generator, condenser, and evaporator temperatures on system performance are investigated. System performance was compared with theoretically simulated performance. It was found that circulation ratio is lower at high generator and evaporator temperatures, whereas it is higher at higher condenser temperatures. The coefficient of performance is higher at high generator and evaporator temperatures, whereas it is lower at higher condenser temperatures. Experimental results indicate that with addition of a rectifier as well as improvement of vapor separation in the generator storage tank, the R134a/DMF-based vapor absorption refrigeration system with plate heat exchangers could be very competitive for applications ranging from –10°C to 10°C, with heat source temperature in the range of 80°C to 90°C and with cooling water as coolant for the absorber and condenser in a temperature range of 20°C to 35°C.  相似文献   

4.
A computational model is developed for the parametric investigation of single‐effect and series flow double‐effect LiBr/H2O absorption refrigeration systems. The effects of generator, absorber, condenser, evaporator and dead state temperatures are examined on the performance of these systems. The parameters computed are coefficient of performance (COP), exergy destruction rates, thermal exergy loss rates, irreversibility and exergetic efficiency. The results indicate that COP and exergetic efficiency of both the systems increase with increase in the generator temperature. There exist different optimum values of generator temperature for maximum COP and maximum exergetic efficiency. The optimum generator temperature is lower corresponding to maximum exergetic efficiency as compared to optimum generator temperature corresponding to maximum COP. The effect of increase in absorber, condenser and evaporator temperatures is to decrease the exergetic efficiency of both the systems. The irreversibility is highest in absorber in both systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a computer-simulation based thermodynamic assessment of a double effect generation absorption air-conditioning system. The proposed system consists of a second effect generator between the first effect generator and the condenser, along with two solution heat exchangers between the generators and the absorber. Input variables to the computer simulation based on heat, mass and material balance equations are the input generator heat supply, the solution flow rate and the ambient conditions. A detailed parametric study using water-LiBr and Methanol-LiBr. ZnBr2 as working fluids for the double effect generation cycle has been carried out for a wide range of ambient conditions under optimum design and off-design conditions. It is found that the COP of this cycle approaches twice that of the single effect cycle for all operating conditions. It is concluded that a double effect cycle is thermodynamically feasible for solar air-conditioning.  相似文献   

6.
A systematic investigation is made of the two-stage vapour absorption refrigeration system employing the refrigerant absorbent combinations of NH3---H2O and NH3---LiNO3. The system consists of coupling two conventional absorption cycles so that the first-stage evaporator produces cooling water to circulate in the absorber of the second stage. The effect of operating variables such as generator temperature, evaporator temperature, absorber temperature and condenser temperature on the coefficient of performance (COP), heat transfer rates and relative circulation have been studied for both single-stage and two-stage absorption refrigeration systems. It is found that the COP is higher for NH3---LiNO3 than for NH3---H2O, in both single-stage and two-stage absorption systems, especially at higher generator temperatures. Furthermore, the minimum evaporator temperature achieved is lower for NH3---LiNO3, and the system can be operated at lower generator temperatures.  相似文献   

7.
This paper presents as assessment based on steady-state thermodynamic analysis and computer modeling of a double effect generation absorption refrigeration cycle for solar air-conditioning. The system consists of a second effect generator between the generator and condenser of the single effect absorption cycle and two solution heat exchangers between the absorber and the two generators. A numerical computer modeling of a water LiBr system based on the solution of simultaneous heat, mass and material balance equations for various components of the system has been carried out. The influences of component temperatures and heat exchanger effectiveness on the cooling coefficients of performance and component heat transfer rates have been investigated to obtain optimum operating conditions for the proposed air-conditioning system. Further, the single and double effect absorption cycles are compared with each other as well as with an ideal absorption cycle operating over the same range of temperatures.  相似文献   

8.
《Applied Thermal Engineering》2007,27(5-6):1043-1053
The integration of a water purification system in a heat transformer allows a fraction of heat obtained by the heat transformer to be recycled, increasing the heat source temperature. Consequently, the evaporator and generator temperatures are also increased. For any operating conditions, keeping the condenser and absorber temperatures and also the heat load to the evaporator and generator, a higher value of COP is obtained when only the evaporator and generator temperatures are increased. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as the working fluid–absorbent pair. Plots of enthalpy-based coefficients of performance (COPET) and the increase in the coefficient of performance (COP) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that proposed (AHTWP) system is capable of increasing the original value of COPET more than 120%, by recycling part of the energy from a water purification system. The proposed system allows to increase COP values from any experimental data for water purification or any other distillation system integrated to a heat transformer, regardless of the actual COP value and any working fluid–absorbent pair.  相似文献   

9.
Miniaturisation of the vapour absorption refrigerator requires replacement of the solution pump by a heat operated bubble pump and air cooled condenser and absorber. The replacement necessitates the selection of working media restricted to vacuum operation, and the air cooling poses the problem of high pressure drops in the refrigerator. Thermodynamic analysis of the absorption refrigerator with such a suitable working medium is performed considering the pressure drops in the system as parameters. The analysis shows that the effect of the evaporator to absorber pressure drop on the system performance is more significant than that of the generator to condenser pressure drop, and it becomes more predominant at the low generator temperature normally encountered in solar operated systems.  相似文献   

10.
This paper compares the theoretical performance of the modelling of a solar absorption air conditioning system operating with water/lithium bromide and an aqueous ternary hydroxide mixture consisting of sodium, potassium and cesium hydroxides in the proportions 40 : 36 : 24 (NaOH : KOH : CsOH). In this paper, plots of the coefficients of performance of a solar air conditioning system operating with these two mixtures are presented. The results showed that similar coefficients of performance are obtained for both mixtures, however, it was found that the system operating with the hydroxides may operate with a higher range of condenser and absorber temperatures and the heat delivered by these components can be removed by air.  相似文献   

11.
This paper is concerned with experimental research on a new solar pump-free lithium bromide absorption refrigeration system with a second generator. By using the second generator together with a lunate thermosiphon elevation tube, the required minimum driving temperature of the heat source is only 68 °C compared to above 100 °C in traditional absorption refrigeration systems. Based on the horizontal-tube falling-film method, the performance of the absorber can be enhanced by the second generator due to an increase in the differential concentration of the solution between the inlet and the outlet of the absorber and an increase in the temperature difference between the inlet and the outlet of the cooling water in the absorber. The yield of condensate with the second generator open is increased by 68% compared to that with the second generator closed. The performance of the evaporator is significantly improved due to the increase in temperature drop of the chilled water and the decrease in the outlet temperature of the chilled water. This leads to an improvement of the performance of the overall refrigeration system. The maximum coefficient of performance (COP) approaches 0.787.  相似文献   

12.
In a double-effect series flow vapour absorption refrigeration system (VARS), an optimum value of the low-pressure generator temperature exists at which all the vapour generated at the high-pressure generator is condensed. At these conditions, a comparative study of the performance of VARS using environment friendly refrigerants such as, R32, R134a, and R124 with N,N′-dimethyl acetamide (DMAC) as the absorbent is made. It is found that the system with R32-DMAC gives the best performance at high evaporator temperatures. R124-DMAC may be preferred at extreme operating conditions like low evaporator and high heat rejection temperatures. Influence of operating temperatures (high-pressure generator, evaporator, condenser and absorber) and the effectiveness of heat exchangers on the optimum low-pressure generator temperature, cut-off temperature, circulation ratio and coefficient of performance are studied. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
提出一种包含吸收溶液冷却结晶过程的新型第二类吸收式热泵循环,并对其工作过程及性能特性进行理论分析与实验研究。结果表明,该循环可在吸收器吸收溶液质量分数显著高于发生器吸收溶液质量分数的条件下工作,其热泵温升能力明显优于现有AHT循环。当冷却结晶终温和冷凝器温度为35℃、发生器温度和蒸发器温度为92℃时,其热泵温升理论上可达97℃。  相似文献   

14.
Three classes of double‐effect lithium bromide–water absorption refrigeration systems (series, parallel and reverse parallel) with identical refrigeration capacities are studied and compared thermodynamically. In order to simulate the performances of the systems, a new set of computationally efficient formulations is used for thermodynamic properties of Li‐Br solutions at equilibrium. The simulation results are used to examine the influence of various operating parameters on the first and second law performance characteristics of the systems. In addition, the dependences are investigated of system performance on the effectivenesses of the solution heat exchangers, the pressure drops between the evaporator and the absorber and between the low‐pressure generator and the condenser, and the low‐grade heat externally supplied to the low‐pressure generator. The results reveal the advantages and disadvantages of different configurations of double‐effect lithium bromide–water absorption refrigeration systems, and are expected to be useful in the design and control of such systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents an investigation on using an ammonia refrigerant with liquid/solid absorbents in an absorber heat recovery cycle where heat released during the absorption process is used to heat up the strong solution coming out of the absorber, thereby reducing the generator heat input and hence improving the coefficient of performance. A comparative thermodynamic study is made with NH3-H2O and NH3-LiNO3 pairs as working fluids for both conventional absorption and absorber heat recovery systems. It is found that an improvement of about 10 per cent in COP for the absorber heat recovery cycle is achieved over the conventional absorption cycle and the NH3-LiNO3 system yields a higher COP than for NH3-H2O over a wide range of generator temperatures and condenser/absorber temperatures. A detailed parametric study is also presented in this paper.  相似文献   

16.
Energy and exergy analyses previously performed by the authors for a single effect absorption refrigeration system have been extended to double effect vapor absorption refrigeration system with the expectation of reducing energy supply as well as an interest in the diversification of the motive power employed by HVAC technologies. The total exergy destruction in the system as a percentage of the exergy input from a generator heating water over a range of operating temperatures is examined for a system operating on LiBr–H2O solution. The exergy destruction in each component, the coefficient of performance (COP) and the exergetic COP of the system are determined. It is shown that exergy destructions occur significantly in generators, absorbers, evaporator2 and heat exchangers while the exergy destructions in condenser1, evaporator1, throttling valves, and expansion valves are relatively smaller within the range of 1–5%. The results further indicate that with an increase in the generator1 temperature the COP and ECOP increase, but there is a significant reduction in total exergy destruction of the system for the same. On the other hand, the COP and ECOP decrease with an increase in the absorber1 temperature while the total exergy destruction of the system increases significantly with a small increase in the absorber1 temperature. The results show that the exergy method can be used as an effective criterion in designing an irreversible double effect absorption refrigeration system and may be a good tool for the determination of the optimum working conditions of such systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
This paper reports on the use of CFD for predicting and improving the performance of a rooftop AC unit. The current work considered the hydrodynamic and thermal fields on the air flow side of the unit with exact modeling of fans and heat exchangers. This is in addition to predicting condensation on cooling coils. Because only the air flow side is considered, the evaporator and condenser compartments are decoupled and the solution in each section is established separately. In the evaporator compartment the flow is solved as a two-phase flow (gas and liquid) with the gas phase being composed of two species (dry air and water vapor). In the condenser section however, the flow is treated as a single phase flow. The exact modeling of heat exchangers and fans increased the grid size and computational cost, but resulted in realistic results and reliable model. A total of 31 million control volumes are used to model the evaporator and condenser sections. Results indicate the presence of several recirculation zones in the evaporator compartment. Sensible and latent cooling capacities for several design conditions predicted by the model are in close agreement with available experimental data. The differences between the total capacities predicted by the model in the evaporator section and those reported experimentally are within 2.7% for all cases considered. Predictions in the condenser section resulted in a load that is only 0.00136% different than the one calculated using experimental data. To improve the performance of the unit, six different modified designs of the evaporator coil are developed and tested. The newly modified designs are based on changing the coil inclination angle and/or number of fins per unit length for the same coil height and surface area. One of the designs resulted in 6.18% decrease in the cooling capacity, while the remaining modifications increased the cooling capacity by values ranging between 2.17% and 8.6%.  相似文献   

18.
Twenty-six absorbent—refrigerant combinations, holding good promise as fluid systems, have been considered for single stage absorption air conditioning system. These fluids have been compared on the basis of solution characteristics, life expectancy characteristics and refrigeration cycle characteristics. The mass flow rates of rich and poor solutions per ton of refrigeration capacity and the coefficient of performance (CP) were compared for an evaporator temperature of 5°C, absorber and condenser temperatures of 35°C and a generator temperature of 120°C (low grade energy sources). More than half of the waste energy available in industry happens to be at a temperatures below 200°C. Other types of low grade thermal energy such as solar energy and geothermal energy can be used in operating vapour absorption refrigeration and air-conditioning systems.  相似文献   

19.
从热工学角度探讨国产吸收式制冷机的发展方向   总被引:1,自引:0,他引:1  
该文从热工学角度探讨了目前我国溴化锂吸收式制冷机整机热力循环及各热质交换设备性能、结构等方面存在的问题;在整机循环方面,指出实现各设备的合匹配、发展新的结构流程及增加新品种、新规格的机组为进一步的发展方向;在各设备性能、结构方面提出应加强吸收机理研究以及表面活化剂、高效强化管的应用研究。  相似文献   

20.
This paper presents a numerical investigation on the thermal performance of a solar latent heat storage unit composed of rectangular slabs combined with a flat-plate solar collector. The rectangular slabs of the storage unit are vertically arranged and filled with phase change material (PCM: RT50) dispersed with high conductive nanoparticles (Al2O3). A heat transfer fluid (HTF: water) goes flow in the solar collector and receives solar thermal energy form the absorber area, then circulates between the slabs to transfer heat by forced convection to nanoparticle-enhanced phase change material (NEPCM). A numerical model based on the finite volume method and the conservation equations was developed to model the heat transfer and flow processes in the storage unit. The developed model was validated by comparing the obtained results with the experimental, numerical and theoretical results published in the literature. The thermal performance of the investigated latent heat storage unit combined with the solar collector was evaluated under the meteorological data of a representative day of the month of July in Marrakesh city, Morocco. The effect of the dispersion of high conductive nanoparticles on the thermal behavior and storage performance was also evaluated and compared with the case of base PCM without additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号