首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
反应堆燃料元件的裂变气体释放率测量是辐照后检验的一项重要内容,它对于评价燃料元件的性能起着重要作用.回堆考验组件采用3×3-2再组装小组件方式,由一期考验的3根老棒、4根新棒和2根控制棒导向管组成.3×3-2小组件在中国原子能科学研究院重水研究堆辐照到燃耗(以金属铀计,全文同)30.9 GW*d/t(老棒)时,堆内出现破损信号.随后将其运至热室,非破坏性检验未发现元件棒破损.为此,采用激光刺孔方法将7根元件棒刺穿,测量元件棒气腔内压和裂变气体释放率.结果表明,元件棒内压均不低于再回堆考验前的压力值,从而进一步证实元件棒未发生破损,与一期考验元件相比,回堆后的燃料棒裂变气体释放率无明显增加.  相似文献   

2.
裂变气体产物的积累会造成燃料元件失效,本文主要利用蒙特卡罗燃耗计算程序RMC对热管式空间快堆UN燃料精细化燃耗和放射性核素的产生进行了计算,研究了空间堆的精细燃耗分布以及UN燃料中裂变气体(主要是Xe和Kr)的积累随运行时间的变化规律。结果表明:百千瓦热管式锂冷空间堆过剩反应性满足7年不换料要求,寿期末的燃料与包壳之间的压强不足以造成燃料元件的破损,整个寿期空间堆燃料处于安全可靠的状态。  相似文献   

3.
为了评价10 MW高温气冷堆(HTR-10)用燃料元件的性能,从第1和第2生产批次中分别随机抽取两个球形燃料元件进行辐照考验.辐照考验在俄罗斯的IVV-2M堆内进行,采用动态辐照试验的方法,可分别控制每个辐照盒中燃料元件的温度和测量气态裂变产物的释放.辐照后检验包括外观检查、尺寸测量、固体裂变产物在基体石墨内的分布测量、包覆燃料颗粒破损率测量和金相观察.辐照后检验结果表明辐照没有引起燃料元件中包覆燃料颗粒的破损, 生产的燃料元件满足10 MW高温气冷堆的设计要求.  相似文献   

4.
为了评估钠冷快堆氧化物燃料元件稳态、瞬态和事故条件下的性能和行为演化,开发了钠冷快堆燃料元件性能分析程序FIBER。程序采用有限体积法实现燃料元件温度的计算,用有限元方法实现力学、裂变气体释放的计算,并通过时间步长控制模块控制程序的稳定运行。为验证程序的准确性,通过调研得到俄罗斯BN600反应堆辐照数据,与FIBER程序的裂变气体释放、柱状晶粒等计算结果进行对比分析。结果表明,FIBER程序对最大燃耗11.8at%、最大辐照损伤78 dpa的快堆燃料元件的辐照变形、柱状晶区、裂变气体释放性能评价是有效的。  相似文献   

5.
一、引言元件内压是元件设计的重要因素,它是由元件内所充的氦气、吸附气体和释放的裂变气体所造成的。由于裂变原子大约有1/8是不易溶于UO_2的氪和氙,它们的聚集和释放直接影响着芯块的肿胀,气隙热导和元件内压。由于元件在堆内运行时裂变气体释放有其独特的行为,需要直接测量运行元件的内压,以探索裂变气体在堆内的释放特性。元件内压(P)是由自由气体量(n个克分子)、相连的开口孔(包括裂缝)及空腔体积和芯块温度所决定:  相似文献   

6.
邓浚献  邓峰 《核安全》2010,(4):47-57
水冷反应堆包括轻水堆和重水堆,轻水堆分为压水堆和沸水堆;重水堆分为加压重水堆和加拿大的氘铀堆。国际上把它们归为一类进行研究。本文涉及的破损燃料元件的在役检测和处理包括:反应堆运行时的检测;换料时或换料后的检测;在燃料组件内鉴别破损的燃料棒;燃料组件的监测、拆卸和修复;破损燃料棒拆出后的检测,破损定位与修补。  相似文献   

7.
邓浚献  邓峰 《核安全》2009,(4):47-57
水冷反应堆包括轻水堆和重水堆,轻水堆分为压水堆和沸水堆;重水堆分为加压重水堆和加拿大的氘铀堆。国际上把它们归为一类进行研究。本文涉及的破损燃料元件的在役检测和处理包括:反应堆运行时的检测;换料时或换料后的检测;在燃料组件内鉴别破损的燃料棒;燃料组件的监测、拆卸和修复;破损燃料棒拆出后的检测,破损定位与修补。  相似文献   

8.
重水反应堆是一种重要的堆型。重水堆要占领更大的市场,将面临三个挑战,即降低成本、提高安全性和可持续发展。根据铀富集度的不同和燃料管理战略.燃料运行周期从60天到180天将轻水堆(LWR)乏燃料元件用于重水反应堆,是实现铀资源最佳利用的范例,而且混合氧化物(MOX)燃料也将引入重水反应堆。本文介绍了印度的先进重水堆,该堆率先采用了钍燃料;俄罗斯联邦正在开发高度安全的气冷重水慢化堆;加拿大在基于CANDU6成熟经验的基础上,开发出下一代重水堆Ng CANDU,功率为65MWe。在经济性和固有安全性和操作性能方面均有大的改进。  相似文献   

9.
从50年代起,加拿大原子能有限公司(AECL)就开始研究重水慢化天然铀反应堆。一个由科学家、工程师、电业界代表、制造商和私人顾问组成的高级专家小组,就加拿大核电厂的选型问题进行了专门研究,最后得出的结论是重水慢化反应堆是加拿大核电厂采用堆型的最佳选择。其理由一方面是考虑到重水堆的中子经济性好,可有效地利用铀资源,本国在重水研究堆上已积累了很多经验;另一方面是考虑到加拿大自身的国力。当时它既不能建造铀同位素浓缩厂(需要巨额投资及复杂的技术),也无力制造压水堆所必需的大型压力容器和其他重要设备。因此,它选择了一条投资少、见效快、容易自立更生发展核能的道路,即发展用重水作慢化剂、天然铀作燃料的压力管式反应堆,简称为坎杜型(CANDU)重水堆核电站。这种电站,只要国内铀资源较为丰富,在具有相对适中工业制造基础的国家就可独立建造。 CANDU堆是卧式结构,在装有低温低压重水慢化剂的卧式圆柱形排管式堆容器内,有数百根压力管贯穿于排管式堆容器内管,压力管内装有燃料元件棒束,高温高压重水冷却剂流经压力管,将燃料裂变所产生的热量带到蒸  相似文献   

10.
核燃料元件是反应堆的核心部件,由燃料芯块、包壳及其构件组成。由于燃料元件的运行环境比较恶劣,中子辐照、冷却剂的腐蚀及在开堆、停堆、和运行后期燃料芯块与包壳的机械相互作用和裂变气体产物的释放,使包壳管承受双向应力,均会造成燃料元件的力学性能下降,形成安全隐患,它的安全性能直接影响反应堆的安全可靠性。为更好地模拟包壳在堆内的受力状态,一般采用内压爆破试验来获得包壳材料的断裂强度与延性数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号