首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 121 毫秒
1.
邹子骁 《通讯世界》2016,(1):260-261
提出了一种基于模型曲线公式的改进扰动观测法,并成功地将其与光伏系统结合实现光伏系统的最大功率点跟踪,通过仿真表明该算法可以有效的防止常规扰动观测法所具有的误判问题,具有快速高效的特点.  相似文献   

2.
由于光伏阵列转换效率不高、供电稳定性较差,同时光伏阵列的伏安特性是强非线性的,为了充分利用太阳能,光伏逆变系统有必要对光伏阵列进行最大功率跟踪。扰动观察法是目前最常用的最大功率跟踪算法,但是其扰动的步长却不好控制,本文针对该缺陷进行改进,仿真结果表明,改进的扰动观察法实现了最大功率跟踪的准确性和快速性,并且波动较小。  相似文献   

3.
4.
光伏阵列由于输出特性具有非线性,为了提高发电效率,需要对其进行最大功率点跟踪(MPPT)。提出了一种基于改进扰动观察法的最大功率点跟踪器的设计方案,该方案在实现最大功率跟踪的基础上,解决了传统扰动观察法在响应速度与跟踪精度之间的矛盾。通过实验对比引入MPPT前后光伏阵列的输出,验证了方案的可行性与有效性。  相似文献   

5.
环境温度、光照强度和负载等因素对光伏电池的输出特性影响很大,为了提高光伏电池的工作效率,需要准确快速地跟踪光伏电池的最大功率点。在分析了光伏电池的输出特性的基础上,建立了光伏电池的仿真模型;针对传统爬山法的不足,采用了自适应占空比扰动法对最大功率点进行了跟踪控制。给出了上述两种算法的工作原理及设计过程。仿真结果表明:自适应占空比扰动算法跟踪迅速,减少了系统在最大功率点附近的振荡现象,提高了系统的跟踪速度和精度。  相似文献   

6.
基于模糊策略的光伏发电MPPT控制技术   总被引:2,自引:1,他引:1  
介绍了太阳能光伏发电系统中最大功率点(Maximum Power Point,MPP)的原理及获取最大功率点的常规方法.模糊控制具有适应性强.鲁棒性好,不依赖被控对象精确模型的特点,适合光伏发电系统输出的非线性特征.这里提出利用模糊控制策略实现光伏发电系统最大功率点的跟踪(Maximum Power Point Tracking,MPPT),论述模糊控制器的结构、规则生成、模糊决策与推理.并在此基础上建立仿真模型,对模糊控制器进行验证和分析.仿真结果表明,基于模糊策略的光伏系统具有优良的动态和稳态性能.  相似文献   

7.
最大功率点跟踪控制的目的是为了将光伏阵列发出的最大能量实时地提供给负载,使光伏发电系统的能量利用率达到最大。在光伏阵列产生电能的应用中,有许多不确定因素,如太阳光照强度、光伏阵列温度的变化、负载的变化、光伏阵列输出特性的非线性,则建立模型分析光伏阵列输出最大功率要考虑很多的因素。从模糊控制技术的分析中知道,模糊控制不需要对被控对象建立精确的数学模型,是一种相对简单的智能控制方法,对处理非线性问题有很好的效果。因此,用模糊控制法来实现MPPT可以得到比较好的效果。本文基于此研究了光伏阵列的非线性功率输出特性,建立了基于Matlab simulink/Power system的光伏阵列仿真模型,对基于模糊控制采用扰动观察法进行光伏发电最大功率点跟踪进行了仿真验证。  相似文献   

8.
为了有效地利用太阳能,有必要对光伏发电系统进行最大功率点跟踪(MPPT)控制研究。文中以两级式光伏并网发电系统为研究对象,建立了任意外界环境下的光伏阵列数学模型。由于光伏阵列的非线性输出特性,将模糊控制思想引入最大功率点跟踪,提出占空比模糊控制的扰动观察法的MPPT控制策略,并通过计算机进行仿真验证。与传统的占空比扰动观察法相比较,该方法能够更加快速、准确地跟踪上太阳能电池的最大功率点。  相似文献   

9.
基于DSP的光伏发电系统中最大功率点跟踪算法的研究   总被引:1,自引:0,他引:1  
基于DSP芯片TMS320F2812设计一种两级式光伏并网发电系统.对该系统提出了一种新型的MPPT控制算法,即在外界环境或负载突变时,先采用一种在线计算短路电流法,避免了对系统正常工作的干扰,以保证跟踪的快速性;在此基础上引入小步长的扰动观察法,对最大功率点处的稳态特性进行优化,可有效减小系统的输出功率在最大功率点的振荡现象.通过Matlab软件分别对扰动观察法、短路电流法以及所提的新型MPPT方法进行仿真,结果表明,该新型MPPT方法能够快速、准确地跟踪外部环境变化,减少了系统在最大功率点的振荡现象,提高了光伏发电系统的效率.  相似文献   

10.
利用Matlab/Simulink搭建了光伏阵列数学模型,分析了传统最大功率跟踪(MPPT)方法的缺陷,针对传统电导增量法跟踪速度慢、存在误判的问题,详细研究了温度和光照强度对于光伏阵列输出特性的影响,提出新的改进电导增量法,并对核心算法进行优化,使用S函数实现了最大功率跟踪。仿真结果证明,改进后的方法能够更加快速和准确跟踪最大功率。  相似文献   

11.
张新亮 《电子设计工程》2013,21(10):112-115
针对恒定电压法在最大功率跟踪过程中所出现的精度差、受环境影响大等缺点,本文提出了一种基于优化电压的变电压最大功率跟踪算法,并给出实现方案。对于分布式光伏系统该方法能够在日照度、温度、负载变化的情况下有效的实现实际最大功率点的跟踪控制、减少系统能量的损耗。实验使用DSP来实现最大功率跟踪算法,并对温度、日照度、反向饱和电流进行补偿。结果证明该方法在日照度、温度、负载变化的情况下工作可靠、响应速度较迅速,并能够有效的改善输出动态特性。  相似文献   

12.
光伏电池的输出功率取决于外界环境(温度和光照条件)和负载状况,需采用最大功率点跟踪(MPPT)电路,才能使光伏电池始终输出最大功率,从而充分发挥光伏器件的光电转换效能.在比较了常用光伏发电系统控制的优缺点后,依据MPPT控制算法的基本工作原理,主电路采用双并联Boost电路,具有电压提升功能,并且能够提高DC-DC环节的额定功率和减小直流母线电压的纹波.针对传统扰动观察法存在的振荡和误判问题,提出了一种新型的基于双并联Boost电路的改进扰动观察法最大功率跟踪策略.在Matlab/Simulink下进行了建模与仿真,仿真结果表明,当外界环境发生变化时,系统能快速准确跟踪此变化,避免算法误判现象的发生,通过改变当前的负载阻抗,使之与光伏电池的输出阻抗等值相匹配采满足最大功率输出的要求,使系统始终工作在最大功率点处,并且在最大功率点处具有很好的稳态性能.最后通过实验验证了该算法的有效性.  相似文献   

13.
光伏发电对于气象条件的依赖比较严重.为了使光伏电池产生尽可能多的电能,需要对其进行最大功率点跟踪控制.本文提出了一种双模式最大功率点跟踪控制方法,此方法结合了短路电流法和电阻增量法的优点,通过Simlink仿真可知,应用这种双模式控制方法的光伏系统在阳光突变时能够快速地重新达到最大功率点,并有效降低光伏系统在最大功率点处的震荡,减少了系统功率损耗.  相似文献   

14.
提出一种基于人工神经网络(ANN)的最大功率点跟踪(MPPT)控制算法。该算法通过扰动和观察(P&O)方法获得人工神经网络模型所需的参数,并分为离线和在线两种模式:离线模式通过测试神经网络参数,找到最佳的网络结构、激活函数和训练算法;在线模式实现优化人工神经网络以便应用于光伏系统。人工神经网络的输入变量为输出功率参数和电压参数,输出变量为归一化的增加或者减少占空比(+1或者-1)。通过Matlab/Simulink模型对所提跟踪算法的性能进行测试验证,结果显示所提算法表现出良好的动态响应速度和稳态控制精度。  相似文献   

15.
由于光伏电池在外界条件发生变化时,其输出特性也随之变化.为了提高光伏系统的效率,需要对其进行最大功率跟踪.针对光伏系统为非线性被控对象,以及存在不确定未知扰动的特性,采用模糊控制器实时调整PID控制器参数的模糊PID控制方法,将其运用到光伏系统中,以满足光伏系统的快速响应,有效消除光伏电池输出功率在最大功率点的振荡,减少能量损失.仿真结果证明,该控制器能快速、准确的跟踪光伏电池的最大功率点,减少稳态时振荡,提高光伏电池工作效率.  相似文献   

16.
针对光伏阵列在阴影下具有多个最大功率点,而传统的优化算法不能有效跟踪全局最大功率点的问题,提出了一种基于粒子群优化算法的跟踪算法,在Matlab平台上利用M函数对光伏阵列和跟踪算法进行编程。仿真结果表明:该控制算法不仅具有跟踪速动快、稳态精度高的特点,而且能够跟踪全局最大功率点,比传统的优化算法更有优势。  相似文献   

17.
一种改进型电导增量法MPPT控制策略仿真研究   总被引:1,自引:0,他引:1  
《信息技术》2019,(3):111-115
针对单一电导增量法存在的动态响应和稳态精度难以调和的问题,文中提出了一种恒定电压法结合变步长电导增量法的MPPT控制策略。在启动时刻通过恒定电压法快速定位最大功率点附近,然后利用变步长电导增量法精确跟踪最大功率点。在Simulink仿真平台上搭建基于Boost电路的MPPT仿真模型,Simulink仿真结果表明:复合MPPT算法不但跟踪速度快,而且稳态精度高,具备良好工程价值。  相似文献   

18.
提出了一种以STM32F103为控制芯片的MPPT汇流箱的设计方法,一片STM32F103控制四路BOOST电路,四路控制脉冲相位互错90度,以减小输出纹波;RS485主从式的通讯架构;采用基于功率预测的MPPT算法,电压外环电流内环的控制方法;基于最小时间片的软件设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号