首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以聚乙烯醇(PVA)为原料、去离子水为溶剂,通过静电纺丝制备PVA纳米纤维膜,利用正交实验探讨静电纺丝过程中纺丝液PVA浓度、纺丝距离、纺丝电压和注射速度对PVA纳米纤维膜形貌及纤维直径的影响,得出制备纤维膜的较佳工艺条件,并分析了纺丝液PVA浓度对纤维膜的力学性能和亲水性能的影响。结果表明:随着纺丝液PVA浓度的增加,PVA纤维的直径逐步变小,直径分布变窄;当纺丝液PVA质量分数为7%、纺丝电压为14 kV、纺丝距离为14 cm、注射速度为0.5 mL/h时,纤维膜的纤维直径最小,为203 nm;正交实验中PVA浓度、纺丝电压、纺丝距离、注射速度4个因素的极差值分别为87.00,49.67,18.33,11.67;纺丝液PVA质量分数从5%增加到7%,纤维膜的断裂强度从2.21 MPa提高至2.81 MPa,断裂伸长率从31.63%提高至56.39%,水接触角从37.7°提高至48.7°。  相似文献   

2.
以水为溶剂,配制质量分数6%的聚乙烯醇(PVA)水溶液,将超支化聚赖氨酸(HBPL)按PVA∶HBPL质量比分别为9∶1,7∶1,5∶1加入PVA水溶液中共混均匀,制得纺丝溶液,在直流电压22 kV、推进速率为0.3 mL/h、接收距离为14.5 cm、30℃的条件下进行静电纺丝制得PVA/HBPL荧光纳米纤维膜,并对其结构性能进行表征。结果表明:PVA/HBPL荧光纳米纤维膜的纤维表面光滑,粗细均匀,平均直径为247~321 nm,在波长392 nm的激光激发下,PVA/HBPL荧光纳米纤维膜的发射波长为438 nm,荧光强度为40.80~98.20,荧光现象明显;随着HBPL含量的增加,PVA/HBPL荧光纳米纤维膜的纤维直径分布变宽,平均直径增加,熔点与熔融焓降低,荧光强度增强,拉伸强度先增加后减小,断裂伸长率降低。  相似文献   

3.
将维生素(VC)溶解在质量分数8%的聚乙烯醇(PVA)水溶液中,通过静电纺丝制得PVA/VC共混纳米纤维。分析了VC含量对溶液性能及静电纺丝速度的影响;测试了纤维的形貌结构及力学性能。结果表明:PVA/VC共混溶液属于切力变稀流体;当PVA/VC质量比为100/10或100/20时,共混溶液的电导率和静电纺丝速度较纯PVA溶液明显提高,制得的纳米纤维表面光滑,粗细均匀;与纯PVA纳米纤维比较,其平均直径和拉伸强度降低,断裂伸长率提高。  相似文献   

4.
《合成纤维》2017,(5):36-39
以废旧涤棉混纺面料为原料,采用化学法对含棉成分进行溶解回收,将得到的纤维素粉末与聚乙烯醇(PVA)、Na Cl配成纺丝液,通过静电纺丝法制备出PVA-纤维素纳米纤维膜。对所纺纤维进行电镜观察,分析静电压、纤维素与PVA质量比、纺丝液中溶质质量分数对纺丝效果的影响。结果表明:随着电压增大,纤维直径先下降后上升;随着纤维素含量的增加,纤维直径逐渐变小;随着溶液浓度的升高,纤维直径逐渐变大。  相似文献   

5.
以壳聚糖(CS)为基材,使用静电纺丝的方法制备了搭载壳寡糖(CHOS)的CS/聚乙烯醇(PVA)/CHOS纳米纤维膜,并对纳米纤维膜的微观形貌、结构、抑菌性、亲水性以及溶解性能进行了研究。研究发现:CS/PVA/CHOS纳米纤维膜具备均匀密致的微观形貌;FT-IR测试表明,CHOS以物理混合的形式分散在CS/PVA/CHOS纳米纤维膜中;XRD测试表明,CHOS的加入改变了纳米纤维膜的结晶性,促进了各组分之间的相容性;水接触角测试表明纳米纤维膜具备良好的亲水性,在m(CS):m(PVA):m(CHOS)=20:80:10时,CS/PVA/CHOS纳米纤维膜的接触角相比于m(CS):m(PVA)=20:80的CS/PVA纳米纤维膜由59.8°下降到37.5°;抑菌性能和溶解性能测试表明,m(CS):m(PVA):m(CHOS)=20:80:10时的CS/PVA/CHOS纳米纤维膜相比于未搭载CHOS的CS/PVA纳米纤维膜,抑菌性提升了38.9%,溶解率提升了38.6%。  相似文献   

6.
采用水溶液饱和法制备了肉桂醛/β环糊精包合物,将其添加到聚乳酸(PLA)溶液中,利用静电纺丝技术制备PLA/肉桂醛复合纳米纤维膜。利用扫描电子显微镜(SEM)探讨了静电纺丝条件对PLA纳米纤维膜纤维直径及表面形貌的影响,通过傅里叶变换红外光谱(FTIR)对PLA/肉桂醛复合纳米纤维膜做了特征官能团分析,并对其热力学性能、力学性能及抗菌性能进行了表征。结果表明,制备的PLA/肉桂醛复合纳米纤维膜纤维形态良好,平均直径为175 nm,FT IR研究显示肉桂醛与PLA之间属于物理混合。该复合纳米纤维膜热分解温度265.52 ℃,拉伸强度为2.45 MPa,对大肠杆菌、金黄色葡萄球菌和枯草芽孢杆菌都具有抑菌性,其中对金黄色葡萄球菌的抑菌性最强。  相似文献   

7.
以三氟乙酸和二氯甲烷为混合溶剂,采用静电纺丝法制备聚对苯二甲酸丁二酯(PBT)/聚乙烯醇(PVA)复合膜。用旋转粘度计和电导率仪测定溶液的黏度和电导率,用扫描电子显微镜、拉伸和水接触角测试PBT/PVA不同比例对纤维膜的形貌、力学和亲水性能的影响。结果表明,随着PVA比例的增加,混合溶液的黏度逐渐增大,而电导率先增大后减小;当PBT/PVA的比例为90/10时,纳米纤维的平均直径最小,为323 nm,而其纳米纤维膜的力学性能与纯PBT纤维膜相比显著提高,拉伸强度、弹性模量和断裂伸长率分别增加了213%,260%和57%;PVA的加入改善PBT纤维的亲水性,制备出力学性能优异且亲水的PBT/PVA纤维膜。  相似文献   

8.
以聚乙烯醇(PVA)为还原剂和保护剂,采用PVA还原氯金酸(HAuCl4)制备纳米金(Au),一步法制备PVA/Au溶液,通过静电纺丝制备了PVA/Au纳米复合纤维.利用紫外可见光谱仪、透明电镜和扫描电镜对PVA/Au纳米复合纤维进行了表征.结果表明:随着HAuCl4浓度的增加,Au纳米粒子的粒径逐渐增大;HAuCl4...  相似文献   

9.
采用静电纺丝方法制备了聚乙烯醇(PVA)纳米纤维,探讨了工艺参数对纳米纤维形貌的影响,并对PVA纳米纤维膜进行热处理,研究了热处理时间与温度对纳米纤维膜力学性能的影响。研究表明:PVA质量分数在6%~10%区间内变化时,可得到直径分布较为均匀的纳米纤维;在其它条件相同时,随纺丝电压的升高,PVA纳米纤维的不匀增大;接收距离的改变对PVA纳米纤维的直径变化影响不大;随PVA质量分数的增加,纳米纤维膜的断裂强度和断裂伸长率逐渐增大;在热处理时间相同时,PVA纳米纤维膜的断裂强度随温度的升高而增大;处理温度相同时,随处理时间的延长,PVA纳米纤维膜的断裂强度变化不大。  相似文献   

10.
聚乳酸/聚乙烯醇纳米纤维的制备及结构   总被引:1,自引:0,他引:1  
以二甲基亚砜为溶剂,制备不同配比的聚乳酸(PLLA)和聚乙烯醇(PVA)的混合溶液,静电纺丝制得PLLA/PVA纳米纤维。采用红外光谱仪、原子力显微镜等对PLLA/PVA纳米纤维结构与性能进行了表征。结果表明:PLLA/PVA纳米纤维中PVA上的羟基与PLLA上的羰基形成了氢键,PLLA与PVA之间存在一定的相互作用,但PLLA/PVA纳米纤维存在相分离现象;混合溶液的PLLA质量分数为11%,PVA质量分数为8%时可以得到较好的PLLA/PVA纳米纤维,但PVA质量分数为6%时出现液滴及珠丝,PVA质量分数为4%时,不能制得纳米纤维。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号