首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
以丙烯酰胺和2-丙烯酰胺基-2-甲基丙磺酸为单体,硝酸铈铵为引发剂,通过溶液聚合对瓜尔胶进行接枝改性,得到接枝共聚物。通过单因素法确定了最优合成条件,利用GPC,FTIR,1H NMR,TG等方法对接枝共聚物进行了表征,同时考察了接枝共聚物压裂液的性能。实验结果表明,最优合成条件为:反应温度55℃,引发剂浓度1.82 mmol/L,单体浓度0.258 mol/L,瓜尔胶用量1.54 g/L。接枝共聚物的热稳定性、溶解性、增稠性和交联性能良好,同时具有良好的抗微生物降解性。0.6%(w)接枝共聚物配制的压裂液冻胶具有良好的耐温耐剪切性,在150℃、170 s~(-1)下剪切120 min后黏度仍保持在50 mPa·s以上,压裂液冻胶破胶后的黏度为4.8 mPa·s,残渣量为438.64 mg/L,相比瓜尔胶大幅减小,有利于降低对储层和裂缝导流能力的伤害。  相似文献   

2.
采用水溶液聚合后水解法,以丙烯酰胺(AM)、(4-丙烯酰胺基)苯基十四烷基二甲基溴化铵(PTDAB)、2-丙烯酰胺基-2甲基丙磺酸(AMPS)为原料合成了疏水缔合聚合物P(AM/PTDAB/AMPS/NaAA),通过考察反应条件对合成聚合物的特性黏数、溶解性以及增黏性的影响规律确定了最佳合成条件,研究了最佳合成条件下所合成聚合物的耐温抗盐性、剪切稳定性以及热稳定性。聚合物的最佳合成条件为:PTDAB加量为总单体质量的0.5%~0.8%,AMPS加量为总单体质量的15%,总单体质量分数为25%,复合引发剂加量为总单体质量的0.1%,pH值为8,引发温度30℃。采用矿化度100 g/L的盐水配制的质量浓度2000 mg/L的合成聚合物溶液的黏度仍大于30 mPa·s;采用矿化度20 g/L的盐水配制质量浓度2000 mg/L的合成聚合物溶液在转速5000 r/min下剪切3 min再静置4 h后的黏度保留率可达80%以上;聚合物溶液在85℃高温老化150 d后的黏度大于20 mPa·s。所合成四元共聚物表现出优异的耐温抗盐性、剪切稳定性以及热稳定性,性能优于高相对分子质量抗盐聚丙烯酰胺P(AM-AMPS-NaAA)。  相似文献   

3.
为满足耐温180℃海水基压裂液的需求,以丙烯酰胺、丙烯酸、2-丙烯酰胺基-2-甲基丙磺酸钠、N-乙烯基吡咯烷酮、顺丁烯二酸单十二烷基酯钠盐、N-十六烷基丙烯酰胺为原料,以亚硫酸氢钠-过硫酸铵为引发剂,制得缔合型聚合物稠化剂SWF-T180,评价了SWF-T180的增黏、抗盐、溶胀、耐温性能及其配制海水基压裂液的性能。研究结果表明,稠化剂SWF-T180增黏效果显著,加量超过0.6%时溶液黏度快速增加;SWF-T180具有良好的抗盐抗钙镁能力和速溶性能,在海水中溶胀8 min后的溶液黏度达到最终黏度的84.3%,耐温达180℃;由1%SWF-T180和0.6%交联剂配制的海水基压裂液在180℃下剪切90 min的黏度为60数70 mPa·s,具有良好的剪切恢复性能,满足海上180℃储层压裂施工的要求。图9表1参18  相似文献   

4.
新型表面活性聚合物驱油剂   总被引:4,自引:0,他引:4  
从分子结构与性能关系入手,研发了具有低界面张力、可聚合的表面活性单体,将可聚合表面活性单体与丙烯酰胺进行共聚,采用复合引发体系、控制低温聚合的方法合成了一种新型表面活性聚合物驱油剂,并利用红外光谱、冷冻蚀刻电镜技术对其结构及其在溶液中的分布状态进行了表征。研究结果表明,可聚合表面活性单体与丙烯酰胺参与了接枝共聚,因而克服了色谱分离效应,新型表面活性聚合物驱油剂在不同水质中具有良好的水溶性、增黏性、耐温抗盐性与抗剪切性能,同时具有较低的油水界面张力,质量分数为0.15%的聚合物溶液与大庆采油一厂原油的界面张力达到1×10 1mN/m数量级。岩心驱油实验表明:新型表面活性聚合物驱油剂具有较好的增黏性及较低的油水界面张力,采收率较普通水解聚丙烯酰胺提高了5.2%。  相似文献   

5.
《石油化工》2015,44(5):607
采用反相乳液聚合法,以丙烯酰胺(AM)、丙烯酸(AA)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为单体,过硫酸钠/亚硫酸钠为引发剂,失水山梨醇油酸酯和烷基酚聚氧乙烯醚为乳化剂,合成滑溜水压裂液用乳液型降阻剂;考察乳化剂和引发剂的用量、反应温度对单体转化率及产物性能的影响;采用FTIR和13C NMR等方法对产物进行表征。表征结果显示,产物为P(AM-AA-AMPS),黏均相对分子质量大于1×107。实验结果表明,合成降阻剂的适宜条件为:反应温度25℃、乳化剂用量3%(w)(基于乳液的质量)、引发剂用量0.025%(w)(基于单体的总质量),在此条件下单体转化率可达99.9%,乳液黏度为650 m Pa s,乳液固含量为35%(w);在清水中加入0.10%(w)的降阻剂,降阻率达到61.5%,剪切5 min时降阻率仅降至60.6%,且具有良好的抗剪切能力。  相似文献   

6.
《石油化工》2015,44(12):1499
以甲基丙烯酸二甲基氨基乙酯(DM)和溴代十六烷为原料合成了甲基丙烯酰氧乙基二甲基正十六烷基溴化铵(DM-16);再以DM-16、丙烯酰胺、2-甲基-2-丙烯酰胺基丙磺酸为原料,采用自由基水溶液聚合法合成了疏水缔合聚合物PADM-16。用IR、~1H NMR、SEM和荧光光谱法分析了PADM-16的结构,并考察了PADM-16为稠化剂的性能。表征结果显示,PADM-16为预期聚合物,其水溶液存在疏水缔合作用,酸溶时间为100 min。实验结果表明,随PADM-16稠化剂含量的增大,稠化酸黏度不断增大;PADM-16具有较好的耐酸性和良好的热稳定性,当盐酸含量为20%(w)时,稠化酸黏度仍可达到57 mPa·s,60℃和90℃下的热稳定系数分别为84.2%和65.0%;合PADM-16的稠化酸在30℃、170 s~(-1)下剪切120 min后,剪切稳定性为90.1%。  相似文献   

7.
以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为主要反应单体,甲基丙烯酰氧乙基二甲基十六烷基溴化铵为疏水单体,采用水溶液聚合法合成了一种新型疏水缔合聚合物,适宜的反应条件是:反应温度50℃,单体质量浓度20%,疏水单体加量1.3%(物质的量分数),引发剂加量0.2%(以单体质量计),pH值为7。对聚合物的结构进行了表征,评价了聚合物溶液的性质。结果表明:聚合物结构与设计的分子结构一致;聚合物在170s-1下剪切2h后黏度保留率为78.2%;临界缔合质量浓度为0.4g/dL;90℃黏度保留率为61.2%;抗盐效果一般,NaCl加入量为0.5mol/L时,黏度保留率为38.2%。  相似文献   

8.
以丙烯酸(AA)、丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和聚氧乙烯醚功能单体(VO实验室自制)为单体,合成了具有T型结构的两亲丙烯酰胺聚合物。采用红外光谱、扫描电镜(SEM)、能谱等测试方法表征T型聚合物结构,并对其耐温、抗盐等性能进行了综合评价。结果表明,反应的最佳条件为w(单体)=20%,w(引发剂)=0.15%(以单体总质量计),反应温度为42℃,反应时间为6h,单体转化率82%,相对分子质量为8.2×106。该T型聚丙烯酰胺比部分水解聚丙烯酰胺(HPAM)具有更加优越的耐温、抗盐性能。  相似文献   

9.
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)、对苯乙烯磺酸钠(SSS)和二甲基二烯丙基氯化铵(DMDAAC)为聚合单体,通过水溶液聚合法制备了高分子聚合物压裂液稠化剂FTW-1,与有机锆交联剂交联,考察了聚合反应温度、体系酸碱度、反应时间、单体浓度、引发剂加量等对高分子聚合物稠化剂FTW-1性能的影响,利用FTIR、TG等方法对高分子聚合物稠化剂FTW-1进行了表征。结果显示,高分子聚合物稠化剂最佳合成工艺为单体质量浓度为35%,pH值为7.8~8.0,引发剂加量为0.12%,反应温度为50 ℃,反应时间为4 h。红外及热重分析显示,该高分子聚合物稠化剂FTW-1分子结构符合预期设计,黏均分子量约为1.8×106,具有良好的热稳定性,可满足180 ℃施工需求。同时,也开展了压裂液性能,诸如溶解性能、增稠和交联性能、耐温耐剪切性能、抗微生物降解性能、破胶性能等的研究,结果表明压裂液各项性能均满足相关行业标准要求。   相似文献   

10.
林波  刘通义  陈光杰 《油田化学》2015,32(3):336-340
以丙烯酸、丙烯酰胺、阳离子不饱和单体、阴离子不饱和单体等为主要聚合单体,十二烷基苯磺酸钠为乳化剂,过硫酸铵.亚硫酸氢钠为引发荆,制得水溶性聚合物稠化剂BCG-1。该稠化剂能在海水中具有良好的增黏能力,0.6%BCG-1海水溶液的表观黏度大于80 mPa·s。与相关添加剂按组成为0.6%BCG-1+0.4%金属离子螯合剂BCG-5+013%黏度增效剂B-55+0.1%温度稳定剂B-13+0.02%~0.05%胶囊破胶剂BCG-10配制的压裂液30℃下放置一周,表观黏度变化较小,无沉淀产生,常温稳定性良好。该压裂液在170 s~(-1)、140℃下剪切60 min后的黏度为46.9mPa·s,耐温耐剪切性较好;落球黏度为4534.7mPa·s,携砂性较好;破胶彻底,残渣含量小于5mg/L,破胶液表面张力小于26mN/m,破胶液对支撑裂缝导流能力的伤害低于8%,具备清洁压裂液的性能特性。  相似文献   

11.
《石油化工》2016,45(12):1526
以丙烯酰胺(AM)、2-甲基-2-丙烯酰胺基丙磺酸(AMPS)、二甲基二烯丙基氯化铵(DMDAAC)和N-乙烯基吡咯烷酮(NV P)为单体,通过水溶液聚合得到一种酸液稠化剂(PAADN)。采用FTIR和1H NMR方法对PAADN的结构进行了表征,采用单因素等方法优选聚合条件,并考察了稠化剂PAADN的性能。实验结果表明,适宜的反应条件为:单体配比m(AM)∶m(AMPS)∶m(DMDAAC)∶m(NVP)=6∶2∶1∶1、反应温度4 5℃、单体总用量2 5%(w)(基于反应体系质量)、过硫酸铵-亚硫酸氢钠引发剂用量为单体总质量的0.9%、体系p H=6~8、反应时间6 h。适宜的PADDN稠化酸配方为:盐酸含量20%(w)、PAADN用量0.5%(w)(基于稠化酸体系质量)、酸溶时间80 min、丙炔醇用量2.0%(w)。该稠化酸的黏度在170 s~(-1)时达到34 m Pa·s,且PAADN在稠化酸中具有较好的热稳定性、剪切稳定性、缓速性能和抗盐性能。  相似文献   

12.
采用阴离子型单体2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和丙烯酰胺(AM)共聚,合成出了一种用作酸液稠化剂的阴离子聚合物。探索了两者共聚的合成条件,研究了聚合方法、引发体系、引发温度、单体比例、单体浓度以及溶液pH值等因素对共聚物分子量的影响,以使所合成的稠化剂对酸液具有较高的稠化能力和良好的热稳定性;同时,以分子量、稠化酸黏度和溴值为评价指标,研究了不同引发体系引发所得共聚物的性能。结果为:对于氧化还原引发剂体系,最佳引发剂用量为总溶液质量的0.01%,适应聚合的起始温度应为10~20℃;对偶氮引发剂体系,最佳引发剂用量为总溶液质量的0.02%,初期聚合在30℃条件下反应4h,反应后期升温至50℃保温1h时,稠化剂样品的性能最好。  相似文献   

13.
从分子结构与性能关系入手,设计了具有降低油水界面张力能力强、空间位阻较小等特点的可聚合表面活性单体.采用低温引发体系,控制聚合温度,将可聚合表面活性单体与丙烯酰胺合成了一种新型驱油用表面活性聚合物,并利用红外光谱、原子力显微镜、冷冻刻蚀电镜,对其进行了结构表征.研究表明:表面活性聚合物在不同水质中具有良好的增黏性、表面活性、热稳定性;解决了色谱分离效应,又具有降低油水界面张力的能力,界面张力可达10-1mN/m;与普通聚丙烯酰胺相比,表面活性聚合物具有较高的采收率,能在一定程度上洗掉孔道中的残余油,克服了现有调驱剂波及效率和洗油效率不能兼顾的问题.  相似文献   

14.
为满足海上高温低渗油田压裂施工的需求,以丙烯酰胺、丙烯酸、N-乙烯基吡咯烷酮和长链季铵盐阳离子单体为原料,制备了一种新型两性离子型聚合物稠化剂CHY-2,并以此为主要处理剂,研制了一套适合海上高温低渗油田的耐高温高矿化度海水基压裂液体系。该压裂液体系具有良好的耐温耐剪切性能,在160℃,170 s-1的剪切速率下实验120 min后,体系黏度仍能保持在100 mPa·s以上;压裂液基液具有良好的耐盐性能,使用105000 mg/L的模拟水配制的基液黏度较高。此外,该压裂液体系还具有较好的滤失性能、悬砂性能和破胶性能,并且破胶液对储层天然岩心基质渗透率的伤害率小于10%,具有较好的低伤害特性,能够满足海上油田压裂施工的要求。现场应用结果表明,海水基压裂液配制过程简单,性能稳定,X-11井压裂施工过程顺利,压后日产油量18.3 t,取得了良好的压裂施工效果。  相似文献   

15.
以丙烯酰胺、丙基氯化铵、2-甲基-2-丙烯酰胺基丙磺酸、丙烯酸为单体,以过硫酸铵和亚硫酸氢钠氧化还原体系为引发剂,在45℃,单体总浓度为25%,引发剂加量为单体质量0.12%和氮气保护条件下,用水溶液聚合方法制备了一种酸液稠化剂TT-1并对其性能进行了评价,结果表明TT-1的酸溶性好,酸溶时间约为22 min;增黏能力强,60℃时2.5%的TT-1可使酸液黏度在40 mPa·s以上,剪切稳定性好,在170 s-1剪切速率下表现出了较强的抗剪切稀释能力;在NaCl和CaCl2总浓度为10%条件下表现出良好的抗盐性能,与常用酸液添加剂的配伍性好.  相似文献   

16.
针对聚合物/表面活性剂复合驱中聚合物与表面活性剂黏度差异导致其在地层中运移不同步而发生的色谱分离,以及常规驱油用聚合物无表面活性的问题,利用可聚合表面活性单体(YCM)、丙烯酰胺(AM),借助于复合引发体系,控制低温聚合的方法,合成了具有增黏性与界面活性的驱油用表面活性聚合物。红外光谱表征表明表面活性聚合物分子结构中含有磺酸基团(SO3-)、苯环、长链亚甲基疏水基团,目标产物与分子结构设计吻合。优化出表面活性单体YCM质量分数为1.5%~2.5%,引发剂质量分数为0.04%~0.06%。表面活性聚合物在大庆模拟盐水中具有较好的溶解性(溶解时间为85 min)、增黏性(表观黏度>40 mPa·s,7.34 s-1)及降低油水界面张力的能力(10-2 mN/m数量级)。岩心驱替实验结果表明,表面活性聚合物比常规聚合物/石油磺酸盐提高采收率2.5%,表面活性聚合物起到了聚合物与表面活性剂二元复合驱的作用,抑制了二元复合驱的色谱分离,实现了表面活性聚合物既能扩大波及体积又能提高洗油效率的功能,对高含水油田提高采收率具有重要意义。   相似文献   

17.
目的 单一功能的压裂液难以满足页岩油气的开采需求,为实现一剂多用,研制了兼顾减阻和增稠性能的一体化聚合物。方法 以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和十八烷基烯丙基二甲基氯化铵(DMAAC-18)为原料,采用水溶液聚合法,通过单因素实验确定最佳反应条件,合成了三元疏水缔合聚合物PAAD-18,进行了结构表征及性能测试。结果 聚合物质量分数为0.1%时,减阻率为71%,在10 m/s的流速下持续剪切10 min,减阻率保持在70%以上;质量分数为0.5%时,表观黏度为106.5 mPa·s, 90℃下黏度保留率为74.6%,盐水中黏度保留率大于52.1%。结论 该聚合物具有良好的耐温、耐盐及耐剪切性能,低含量下可做减阻剂,高含量下可做增稠剂,为体积压裂用多功能聚合物。  相似文献   

18.
为获得性能优良的压裂液稠化剂, 以丙烯酰胺 (AM)、 2-丙烯酰胺基-2-甲基丙磺酸 (AMPS)、 苯乙烯 (St) 和丙烯酸 (AA) 为单体, 采用水溶液聚合法制备出了 AM/AMPS/St/AA 四元共聚物 TKF, 优化了聚合反应条件, 并采用红外光谱表征了 TKF的结构。研究了以稠化剂 TKF 为主剂的压裂液的成胶性能、 耐温抗盐性能、 抗剪切性能和破胶性能。结果表明: 在如下条件下合成的 TKF 具有良好的性能:St 加量为 AM 质量的 9%, AMPS、 AM质量比为 3:7, AA加量为 AM质量的 1.60%, 引发剂加量(相对于单体总量) 0.24 %, 反应温度 45℃, 反应时间 4h, pH 值 8。以稠化剂 TKF 为主剂的压裂液的成胶性、 耐温耐盐性能及抗剪切性能优良。在质量分数 3%的溶液中用 0.3%六次甲基四胺交联后, 所得压裂液冻胶黏度可达 211 mPa·s; 耐温能力达 150℃左右; 在压裂液冻胶中加入 10 g/L 的 CaCl2后黏度仍为 100 mPa·s; 在温度 140℃、 剪切速率 170 s-1下剪切 120 min 后的黏度保留率仍大于 90%。该压裂液用过硫酸铵破胶后的破胶液黏度小于 5 mPa·s, 几乎无残渣, 对地层伤害较小。图 6表2参11  相似文献   

19.
以丙烯酰胺(AM)、丙烯酸(AA)和1-丙烯酰基-4-甲基哌嗪(PZAM)为主要单体,通过氧化还原引发体系,制备了一种含哌嗪环聚合物驱油剂AM/AA/PZAM,通过IR对聚合物进行了结构表征。实验结果表明,溶解性测试表明该聚合物具有很好的溶解性。2 000mg/L的聚合物溶液表观黏度可达512.2mPa·s;在10 000mg/L NaCl、1 000mg/L CaCl_2或1 000mg/L MgCl_2的盐水溶液中,黏度保留率分别为12.5%,11.6%,11.1%;在1 000s~(-1)剪切速率下,黏度保留值为31.9mPa·s;相比25℃,聚合物溶液在120℃下黏度保留率为60.9%。在模拟驱油实验中,该聚合物溶液可提高模拟原油采收率达12.5%。  相似文献   

20.
以丙烯酰胺(AM)为主单体,对苯乙烯磺酸钠(SSS)和甲基丙烯酰氧乙基三甲基氯化铵(DMC)为改性单体,通过水溶液聚合制备一种两性丙烯酰胺聚合物。通过单因素实验确定了适宜的合成条件,并利用FTIR、黏度和密闭流动摩阻测试系统对聚合物的结构和性能进行了评价。实验结果表明,适宜的合成条件为:n(SSS)∶n(DMC)=1.28∶1、AM用量为单体总质量的65%(w)、单体总用量为体系总质量的35%(w)、引发剂用量为单体总质量的0.2%(w)、反应温度55℃。在此条件下得到的聚合物抗盐性能优异,在盐含量30 000 mg/L的模拟水中的黏度保留率为123.53%,具有良好的耐温性能和快速增黏性能,降阻性能优良且在高盐环境中效果更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号