首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
将维生素(VC)溶解在质量分数8%的聚乙烯醇(PVA)水溶液中,通过静电纺丝制得PVA/VC共混纳米纤维。分析了VC含量对溶液性能及静电纺丝速度的影响;测试了纤维的形貌结构及力学性能。结果表明:PVA/VC共混溶液属于切力变稀流体;当PVA/VC质量比为100/10或100/20时,共混溶液的电导率和静电纺丝速度较纯PVA溶液明显提高,制得的纳米纤维表面光滑,粗细均匀;与纯PVA纳米纤维比较,其平均直径和拉伸强度降低,断裂伸长率提高。  相似文献   

2.
采用经十六烷基三甲基溴化铵有机改性的钠基蒙脱土(Na-OMMT)对间位芳香族聚酰胺(PMIA)进行改性,并采用刮涂法制得PMIA/Na-OMMT纳米复合薄膜,对复合薄膜的形貌结构及性能进行了表征。结果表明:当Na-OMMT质量分数小于等于1.5%时,Na-OMMT在PMIA基体中的分散性较好;当Na-OMMT质量分数为1.5%时,PMIA/Na-OMMT纳米复合薄膜的电压击穿强度为106.48 kV/mm,比纯PMIA薄膜提高了26.73%,表面电阻率为1.25×10~(14)Ω,体积电阻率为7.86×10~(15)Ω·cm,均比纯PMIA薄膜显著提高;随着Na-OMMT含量的逐渐增加,PMIA/Na-OMMT纳米复合薄膜的热膨胀系数减小,光学透过率逐渐减小,对紫外光的阻挡作用有较大提高,拉伸强度先增大后减小,当Na-OMMT质量分数为1.0%时,拉伸强度达到最大值,为108.12 MPa。  相似文献   

3.
以水为溶剂,配制质量分数6%的聚乙烯醇(PVA)水溶液,将超支化聚赖氨酸(HBPL)按PVA∶HBPL质量比分别为9∶1,7∶1,5∶1加入PVA水溶液中共混均匀,制得纺丝溶液,在直流电压22 kV、推进速率为0.3 mL/h、接收距离为14.5 cm、30℃的条件下进行静电纺丝制得PVA/HBPL荧光纳米纤维膜,并对其结构性能进行表征。结果表明:PVA/HBPL荧光纳米纤维膜的纤维表面光滑,粗细均匀,平均直径为247~321 nm,在波长392 nm的激光激发下,PVA/HBPL荧光纳米纤维膜的发射波长为438 nm,荧光强度为40.80~98.20,荧光现象明显;随着HBPL含量的增加,PVA/HBPL荧光纳米纤维膜的纤维直径分布变宽,平均直径增加,熔点与熔融焓降低,荧光强度增强,拉伸强度先增加后减小,断裂伸长率降低。  相似文献   

4.
通过静电纺丝方法,将氯化锂/N,N–二甲基乙酰胺(Li Cl/DMAc)溶解间位芳纶(PMIA)制备了PMIA纳米纤维,探索了溶液浓度、接收距离、纺丝电压及接收速度等工艺参数对纤维形貌及其直径分布的影响。通过扫描电子显微镜观察了PMIA纳米纤维形貌及应用Image-J软件测量统计了PMIA纤维直径。结果表明,溶液浓度为8%~10%、纺丝电压为16~18 k V、接收距离为15~20 cm,接收速度60~80 r/min的范围内,间位芳纶纳米纤维成型良好,直径分布范围为100~120 nm;PMIA纳米纤维直径随着溶液浓度的减小、静电电压的增加而减小,随着接收速度的增加纤维取向增加。  相似文献   

5.
在聚己内酯(PCL)/冰乙酸(GAC)溶液体系中加入低毒低挥发性溶剂碳酸乙烯酯(EC),采用静电纺丝法成功制备纳米纤维,采用扫描电子显微镜研究了不同EC浓度对制得的纤维形貌和直径的影响。结果表明,当溶液中PCL质量分数为20%,EC体积分数从0%变化到9%时,纳米纤维数量增加,平均直径逐渐变小;当EC体积分数从9%变化到15%时,微米纤维或珠串状纤维数量开始增加,平均直径逐渐变大。对比研究了EC体积分数为9%的溶液与未加EC的溶液的纺丝稳定性,同时对比研究了由这两种溶剂分别制备的纳米纤维膜和微米纤维膜的结构和性能。结果表明,PCL/GAC/EC溶液体系黏度可在24h内保持稳定,满足连续电纺要求;X射线衍射测试结果表明两种纤维膜结晶构型一致,只是结晶度和晶粒大小有所区别;傅里叶变换红外光谱分析结果表明EC对PCL的化学结构没有影响;与微米纤维膜相比,纳米纤维膜的比表面积提高了362.6%,平均孔直径有所减小,接触角有所增大;纳米纤维膜的拉伸断裂应力稍大但断裂应变明显小于微米纤维膜。  相似文献   

6.
以N,N-二甲基甲酰胺(DMF)为溶剂、超支化聚酰胺修饰的氧化石墨烯(HPNGO)和热塑性聚氨酯(TPU)为原料,采用静电纺丝法制备了HPNGO/TPU复合纳米纤维。通过扫描电子显微镜、傅里叶变换红外光谱仪和动态力学分析仪研究了不同添加量的HPNGO对HPNGO/TPU复合纳米纤维的形貌、结构及性能的影响。结果表明:HPNGO/TPU复合纳米纤维直径与HPNGO的添加量成反比关系,纤维拉伸强度和初始模量与HPNGO的添加量成正比关系;当添加HPNGO质量分数(相对TPU)为3%时,HPNGO/TPU复合纳米纤维直径最小,平均直径为0.17μm,拉伸强度和初始模量最大,分别为3.884,0.193 MPa,断裂伸长率最小为170.2%;HPNGO的加入对TPU的分子结构无影响,二者之间为物理复合。  相似文献   

7.
多壁碳纳米管(MWCNTs) 经酸化处理后与聚酰胺66(PA66)共纺制备MWCNTs-PA66纳米纤维膜后与邻甲酚醛环氧树脂(o-CFER)进行复合固化,制备了o-CFER/MWCNTs-PA66复合材料,并对其微观结构、力学性能和热性能进行了研究。结果表明,酸化MWCNTs表面引入了含氧基团,使PA66纤维膜的直径增大;o-CFER/MWCNTs-PA66复合材料的冲击强度、拉伸强度随MWCNTs含量的增加先增大后降低;当MWCNTs含量为0.5 %(质量分数,以PA66质量为基准)时,冲击强度和拉伸强度均达到最大值分别为0.29 kJ/m2和1.96 MPa,冲击强度较o-CFER树脂提高了23.2 %,较o-CFER/PA66复合材料提高了16.3 %,拉伸强度较纯o-CFER树脂提高了74 %;MWCNTs-PA66复合纤维膜能够提高o-CFER的耐热性。  相似文献   

8.
以壳聚糖(CS)和聚氧化乙烯(PEO)为原料,通过静电纺丝制得CS/PEO纳米纤维膜,利用正交实验优化静电纺CS/PEO纳米纤维膜的制备工艺条件;研究了CS/PEO纳米纤维膜的结构和性能及其应用于圣女果的包装保鲜,并与CS/PEO流延膜(简称流延膜)、浸渍CS/PEO溶液的普通保鲜膜(简称涂膜)、基于普通保鲜膜的CS/PEO纳米纤维复合膜(简称复合膜)、普通保鲜膜的应用效果进行比较。结果表明:正交实验得到静电纺CS/PEO纳米纤维膜的最佳条件为CS与PEO质量比8:2,电压16 kV,接收距离10 cm,在此条件下制得的CS/PEO纳米纤维膜的拉伸强度为14.2 MPa,断裂伸长率为43.6%;CS/PEO纳米纤维膜、流延膜各组分之间存在强的相互作用并具有很好的相容性;使用最佳条件下制得的CS/PEO纳米纤维膜包裹圣女果,相对于用流延膜、涂膜、复合膜、普通保鲜膜、其他条件下制得的CS/PEO纳米纤维膜包裹圣女果,其保鲜效果最好,用其包裹圣女果12d后,圣女果失重率最小为6.3%,维生素C含量最高为289.2μg/g。  相似文献   

9.
采用水溶液饱和法制备了肉桂醛/β环糊精包合物,将其添加到聚乳酸(PLA)溶液中,利用静电纺丝技术制备PLA/肉桂醛复合纳米纤维膜。利用扫描电子显微镜(SEM)探讨了静电纺丝条件对PLA纳米纤维膜纤维直径及表面形貌的影响,通过傅里叶变换红外光谱(FTIR)对PLA/肉桂醛复合纳米纤维膜做了特征官能团分析,并对其热力学性能、力学性能及抗菌性能进行了表征。结果表明,制备的PLA/肉桂醛复合纳米纤维膜纤维形态良好,平均直径为175 nm,FT IR研究显示肉桂醛与PLA之间属于物理混合。该复合纳米纤维膜热分解温度265.52 ℃,拉伸强度为2.45 MPa,对大肠杆菌、金黄色葡萄球菌和枯草芽孢杆菌都具有抑菌性,其中对金黄色葡萄球菌的抑菌性最强。  相似文献   

10.
通过溶液静电纺丝法制备了聚芳醚砜酮(PPESK)微纳米纤维膜,借助于扫描电子显微镜和拉伸试验机分别对纤维膜的形貌和力学性能进行了表征,用正交试验对微纳米纤维膜的制备工艺参数进行了优化。结果表明,在给定条件下,对纤维直径影响由大到小的工艺参数依次为:溶液浓度给料速度纺丝电压。纤维直径最小的工艺条件为:溶液浓度19%,纺丝电压10 k V,给料速度为0.04 mm/min。对纤维膜拉伸强度影响由大到小的工艺参数依次为:给料速度纺丝电压溶液浓度。纤维拉伸强度最大的工艺条件为:溶液浓度24%,纺丝电压14 k V,给料速度0.04 mm/min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号