共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
针对数字图像可逆水印的高嵌入容量和不可见性的权衡问题,该文提出一种基于分块自适应压缩感知的可逆水印算法(Reversible Watermarking Algorithm Based on Block Adaptive Compressed Sensing, BACS-RWA)。该算法对载体图像分块,利用周围块与目标块的统计关系判断块类型,自适应地选择容量参数进行分块压缩感知,并利用整数变换嵌入水印;为提高水印嵌入容量将水印嵌入到经压缩感知后的平滑和普通载体图像块中,复杂载体图像块不做处理,以确保图像质量和不可感知性;采用分块压缩重构算法和可逆整数变换来恢复载体图像。通过对不同纹理图像实验并与同类算法对比,结果表明:当以Plane为载体图像时,最佳嵌入容量达1.87 bpp。分块自适应压缩感知理论的引入使算法具有良好的综合性能,在提高嵌入容量的同时,又能有效地降低嵌入数据后对原始图像质量的影响。 相似文献
5.
6.
7.
在对高光谱图像采样重构的研究中,整体采样和固定分块采样没有考虑到高光谱图像复杂的纹理特征分布,使用了相同的测量矩阵导致图像的重构质量较差。针对此问题,该文提出基于2维图像熵自适应分块压缩感知重构方法(ABCS-IE),该方法以图像2维熵作为高光谱图像纹理细节的度量,根据图像的纹理细节分布自适应改变图像子块的大小,然后为不同的图像块分配特定的采样值,根据分配的采样值设计专有的测量矩阵对图像块进行压缩测量,将采样测量值代入重构算法中进行重构。实验结果表明,与整体采样重构和固定分块采样重构相比,将该方法应用到压缩感知重构算法中对高光谱图像进行采样重构后,重构的图像在视觉效果上有明显的提高,取得的峰值信噪比(PSNR)和结构相似度(SSIM)最大,采样率为0.4时,PSNR提高了2~4 dB,SSIM最大提高了0.27,均方根误差(RMSE)和信息熵差值(ΔH)也有所降低,说明重构的图像更加接近原始图像。而且运算时间也减少了1~1.5 s。可见,该方法能充分利用高光谱图像的纹理特征,有效提高图像的重构质量,同时减少重构的运算时间。 相似文献
8.
9.
10.
块稀疏信号是一种典型的稀疏信号,目前在块稀疏信号的压缩感知问题中,大多数信号重构算法要求信号的块稀疏度已知且算法复杂度高.针对实际应用中信号块稀疏度未知的情况,提出了一种块稀疏度自适应迭代算法,用于信号重构.首先,该算法初始化一个块稀疏度,其值按设定步长进行增加.对每一个块稀疏度的迭代,算法都会找到信号支撑块的一个子集,并修正更新上一次找到的信号支撵块,最后找到信号的整个支撑块,从而重构出源信号.该算法不需要信号的块稀疏度作为先验知识,而且算法复杂度低.仿真实验表明,该算法的重构概率较已有大多数块稀疏信号重构算法的重构概率高,在块稀疏信号的压缩感知问题中具有实际意义. 相似文献
11.
12.
13.
FIR自适应滤波的语音增强算法 总被引:1,自引:1,他引:1
提出一种基于线性预测FIR自适应滤波的语音增强算法,该算法可实时过滤被噪声污染的语音信号,提高信噪比,从而提高语音识别系统的识别率。仿真结果证明该算法具有较好的降噪效果。 相似文献
14.
Vullings R de Vries B Bergmans JW 《IEEE transactions on bio-medical engineering》2011,58(4):1094-1103
The ongoing trend of ECG monitoring techniques to become more ambulatory and less obtrusive generally comes at the expense of decreased signal quality. To enhance this quality, consecutive ECG complexes can be averaged triggered on the heartbeat, exploiting the quasi-periodicity of the ECG. However, this averaging constitutes a tradeoff between improvement of the SNR and loss of clinically relevant physiological signal dynamics. Using a bayesian framework, in this paper, a sequential averaging filter is developed that, in essence, adaptively varies the number of complexes included in the averaging based on the characteristics of the ECG signal. The filter has the form of an adaptive Kalman filter. The adaptive estimation of the process and measurement noise covariances is performed by maximizing the bayesian evidence function of the sequential ECG estimation and by exploiting the spatial correlation between several simultaneously recorded ECG signals, respectively. The noise covariance estimates thus obtained render the filter capable of ascribing more weight to newly arriving data when these data contain morphological variability, and of reducing this weight in cases of no morphological variability. The filter is evaluated by applying it to a variety of ECG signals. To gauge the relevance of the adaptive noise-covariance estimation, the performance of the filter is compared to that of a Kalman filter with fixed, (a posteriori) optimized noise covariance. This comparison demonstrates that, without using a priori knowledge on signal characteristics, the filter with adaptive noise estimation performs similar to the filter with optimized fixed noise covariance, favoring the adaptive filter in cases where no a priori information is available or where signal characteristics are expected to fluctuate. 相似文献
15.
16.
讲述了Kalman自适应噪声消除器设计方法,并提出了一种有效的修正模式。理论推导和实验结果表明,本设计方案显著地改进了自适应噪声消除器的性能。 相似文献
17.
18.
19.
20.
The output error approach to adaptive IIR filtering is considered from a state observation perspective, and a new algorithm, termed the observer-based regressor filtering (OBRF) algorithm, is developed. The convergence requirements of the OBRF are established as a persistent excitation condition on the regressor and a strict positive reality (SPR) condition on an operator arising in the algorithm. Speed of convergence experiments show that the OBRF algorithm converges more quickly than the related output error algorithm for the hyperstable adaptive recursive filter (HARF), although the OBRF algorithm converges as quickly as typical equation error schemes. The OBRF is shown to compare favorably with equation error with respect to parameter bias in the presence of output measurement noise. Thus, OBRF is a compromise between the equation error and output error approaches. In addition, algorithm parameter selection to satisfy the SPR condition for OBRF is explored and compared with the related conditions for HARF 相似文献