首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
针对传统的蚁群算法在解决移动机器人路径规划问题时存在收敛性差、搜索速度慢、过于依赖参数选择等问题,提出一种自适应萤火虫算法改进蚁群算法的混合算法。首先,在蚁群算法基础上引入萤火虫算法,对蚁群算法的核心参数进行优化;其次,针对两种算法混合后时间开销大的问题,引入精英策略和承接式相结合的信息素更新方式,并对萤火虫算法的步长因子进行自适应设计,以提高整个混合算法的求解效率和求解精度;最后,在不同的栅格环境下进行路径规划仿真实验。结果表明,混合智能算法较传统蚁群算法综合效果有明显提升。  相似文献   

2.
基于改进蚁群算法的移动机器人路径规划   总被引:2,自引:0,他引:2  
针对大多数路径规划方法所忽视的路径尖峰,以及传统蚁群算法(ACA)易出现的早熟、陷入局部最优等问题,提出一种改进ACA以用于路径规划.首先,在ACA中融入遗传算子,利用交叉与变异操作来扩大解的搜索空间,提升解的全局性.然后,引入简化与平滑操作优化算子,对所寻路径做进一步处理,消除路径中不必要的尖峰,提高其平滑性.栅格环境下的机器人路径规划仿真结果表明,与A*以及传统ACA相比,所提算法能够得到更为平滑的最短路径.  相似文献   

3.
基于改进蚁群粒子群算法的移动机器人路径规划   总被引:1,自引:0,他引:1  
全局静态地图下,针对蚁群算法规划机器人移动路径时存在计算时间长、搜索效率低,并且得到的优化路径转弯次数过多的问题,提出了一种改进蚁群粒子群算法:首先利用粒子群算法快速得到蚁群算法初始信息素,然后进行蚁群算法路径规划,对得到的路径采用惯性优化,对每个节点进行遍历,当 2个节点间的路径上无障碍物时,将中间节点删除,转换为优化路径。仿真实验表明,该方法与传统蚁群算法及相关改进算法相比,能有效减少迭代次数、提高搜索效率、减少转弯次数、缩短路径长度,从而提高路径质量。  相似文献   

4.
5.
基于改进蚁群算法的移动机器人全局路径规划   总被引:3,自引:0,他引:3  
对已栅格化的机器人运动空间中的障碍物预处理,在蚁群算法原理的基础上,改进了伪随机比例规则,使蚂蚁的下一节点选择更加倾向于目标点,提高了蚂蚁的搜索效率。引入最优一最差蚂蚁思想来更新全局信息素轨迹的强度,增强搜索过程的指导性。为了防止早熟收敛现象的发生,采用最大一最小蚂蚁思想来限制信息素的强度。仿真研究表明:该算法具有高适用性和灵活性,对解决静态路径规划问题是可行的,有效的。  相似文献   

6.
提出了基于一种改进微粒群优化算法的移动机器人在已知环境信息下的路径规划方法。通过对算法中微粒的速度进化方式的改进,使算法能有效地对搜索空间进行搜索,避免陷入过早收敛,此外还将边界约束、静态避障和最短路径这3个条件表示成一个简单的适应度函数,使整个优化过程满足路径规划的任务要求。最后,通过仿真取得了很好的效果,证实了方法的可行性和有效性。  相似文献   

7.
提出了基于一种改进微粒群优化算法的移动机器人在已知环境信息下的路径规划方法。通过对算法中微粒的速度进化方式的改进,使算法能有效地对搜索空间进行搜索,避免陷入过早收敛,此外还将边界约束、静态避障和最短路径这3个条件表示成一个简单的适应度函数,使整个优化过程满足路径规划的任务要求。最后,通过仿真取得了很好的效果,证实了方法的可行性和有效性。  相似文献   

8.
基于改进遗传算法的移动机器人路径规划   总被引:3,自引:0,他引:3  
将遗传算法用于移动机器人的全局路径规划,复杂的二维编码问题简化为一维编码问题,建立边界约束、路径点必须在障碍物之外、路径点连线不能与障碍物相交等3个约束条件,以机器人行走路径最短作为适应度函数进行遗传优化,在规划好的路径上修正.仿真实验表明了该方法的有效性.  相似文献   

9.
10.
移动机器人的路径规划是按照某一性能指标搜索一条从起点到目标点的最优或次最优的无碰撞路径.将蚁群算法用于移动机器人的路径规划,阐述了移动机器人路径规划蚁群算法的基本原理,指出蚁群算法的迭代过程是马尔科夫过程,分析了蚁群算法的收敛性,提出了改善蚁群算法收敛性的途径.仿真结果表明:该算法能够在较短的时间内规划出较优的路径,且该算法有效可行.  相似文献   

11.
针对一种基于蚂蚁觅食行为的移动机器人路径二次优化方法,指出其要求路径点的调整点足够多和容易陷入局部最优点的局限,说明该局限在实现上相对应的要求是传感器精度、机器人惯性和行走机构与地面的摩擦力,最后采用总路程长度作为优化目标函数并增加等分点对原方法改进.  相似文献   

12.
一种移动机器人三维路径规划算法   总被引:1,自引:0,他引:1  
研究移动机器人在三维工作环境中的全局路径规划问题,提出了一种基于神经网络结构能量函数的路径规划算法,可根据障碍物的形状设定不等的模拟退火初始温度.仿真结果表明,该算法计算简单,收敛速度快,是一种有效的移动机器人三维路径规划算法.  相似文献   

13.
移动机器人分层路径规划方法研究   总被引:4,自引:0,他引:4  
移动机器人研究的一个重要领域是全局路径规划,为此给出一种路径规划方法:分层单元分解法,该方法将机器人的工作空间分层分解,并在每一层搜索路径;最终得到一条与障碍物无碰的全局路径,详细介绍了算法的实现,并进行了仿真实验,仿真结果证明了该算法能有效地节省内存空间,在大的工作环境下具有很强的实用性。  相似文献   

14.
为解决单向快速探索随机树(rapid exploring random tree,RRT)算法路径规划效率低且易陷入局部极小点的问题,提出了一种自适应启发式多快速探索随机树(adaptive heuristic multiple rapid exploring random tree,AHMRRT)路径规划算法.一方面,基于多随机树构建策略的AHMRRT算法可以在起始点、目标点、子目标点生成4棵随机树,同时进行扩展搜索,从而提高路径规划效率;另一方面,通过在单棵随机树生长过程中添加自适应启发式偏置因子,AHMRRT算法可以根据环境中障碍物的情况自适应地改变新节点的生成策略.探索自由空间时,该算法可以在偏置因子的作用下迅速向目标点扩展以提高搜索效率;探索多障碍物空间时,该算法将调用随机采样函数以防止落入局部最优.在仿真实验中,设计了4种环境下AHMRRT算法与随机概率目标快速探索随机树(probability goal RRT,PGRRT)、双向快速探索随机树(bidirectional RRT,BRRT)算法的对比实验,仿真实验结果证明了该算法的可行性和高效性.  相似文献   

15.
传统A*算法找到零碰撞概率的节点,需要很多处理时间并涉及检查很多相邻节点,因此工作效率较低。文章提出,将图像处理技术与路径规划避免碰撞技术相结合,通过基于象限判别下的改进A*算法,识别从起始点到目标点的最佳路径,避免碰到任何障碍物。为了验证所提出的改进A*算法可以解决传统A*算法中的缺点,通过编程语言MATLAB的图形处理进行了避障路径仿真。结果表明,所提出的改进A*算法可以有效缩短路径,减少处理时间。  相似文献   

16.
基于神经网络和粒子群算法的移动机器人路径规划   总被引:1,自引:0,他引:1  
针对移动机器人传统路径规划算法效率不高,寻优能力差等问题,提出一种基于神经网络和粒子群优化算法相结合的移动机器人路径规划方法.该方法利用神经网络实现大量的并行和分布计算,发挥PSO简单、容易实现的优点,提高了路径规划的计算效率和可靠性.仿真结果表明,这种新路径规划方法是可行且有效的.  相似文献   

17.
针对移动机器人未知环境路径规划问题,基于动态自组织特征映射网络提出了一种自组织网络动态生成A*的算法(dynamic growing self-organizing map with A*,DGSOM_A*),并将其应用于移动机器人地图创建和路径规划.该方法利用Mobotsim二维仿真软件构造了环境模型,机器人通过无碰自由巡航获取环境信息,然后把上一步得到的环境信息作为DGSOM_A*算法样本通过SOM神经元自主生长进行地图创建,生成以少数SOM图神经元分布描述环境特征信息的拓扑地图,最后完成起始点到目标点的导航任务.实验结果表明,相比传统的SOM算法,基于DGSOM_A*算法机器人能有效地通过对环境地图的绘制熟悉复杂环境并能实现最优路径选取.  相似文献   

18.
基于蚁群算法的三维路径规划大多存在规划速度慢、准确度不高等问题,提出了一种基于改进启发函数和自适应修正挥发系数的蚁群算法,设计了一种新的启发函数,提高了三维路径规划的准确度;提出自适应调整挥发系数,避免搜索陷入局部最优,同时加快了算法收敛速度。最后进行了仿真实验,结果证明了该方法的可行性和有效性。  相似文献   

19.
汤云峰    赵静    谢非    李鑫煌    林智昌    刘益剑 《南京师范大学学报》2021,(3):049-55
针对基本遗传算法在机器人路径规划中存在收敛速度慢、易陷入局部最优解的问题,提出一种改进的遗传算法. 在适应度函数中增加带有惩罚项的平滑度函数; 引入精英保留机制,保留每一代最优个体; 自适应调整交叉概率和变异概率,使交叉概率和变异概率随进化次数变化而变化. 利用MATLAB在两种障碍物地图中与其他两种算法进行仿真对比分析,实验结果表明,改进后的算法在路径规划的应用中有效减少了机器人的转弯次数,提高了逃离局部最优路径的能力,寻优能力更强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号