首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
万建武  杨明  吉根林  陈银娟 《软件学报》2013,24(5):1155-1164
传统的局部保持降维方法追求最低的识别错误率,即假设每一类的错分代价都是相同的.这个假设在真实的人脸识别应用中往往是不成立的.人脸识别是一个多类的代价敏感和类不平衡问题.例如,在人脸识别的门禁系统中,将入侵者错分成合法者的损失往往高于将合法者错分成入侵者的损失.因此,每一类的错分代价是不同的.另外,如果任一类合法者的样本数少于入侵者的样本数,该类合法者和入侵者就是类别不平衡的.为此,将错分代价融入到局部保持的降维模型中,提出了一种错分代价最小化的局部保持降维方法.同时,采用加权策略平衡了各类样本对投影方向的贡献.在人脸数据集AR,PIE,Extended Yale B 上的实验结果表明了该算法的有效性.  相似文献   

2.
维数灾难是机器学习算法在高维数据上学习经常遇到的难题,基于局部敏感判别分析(locality sensitive discriminant analysis,LSDA),可以很好地解决维数灾难问题.且LSDA构建邻域时不能充分反映流形学习对邻域要求和克服测度扭曲问题,利用自适应邻域选择方法来度量邻域,同时,引入施密特正交化获得正交投影矩阵,提出一种自适应邻域选择的正交局部敏感判别分析算法.在ORL和YALE人脸数据库上进行实验,实验结果表明了该算法的有效性.  相似文献   

3.
提出一个面向人脸识别的基于图优化的线性判别分析降维算法。该算法首先定义同类性的关联邻接矩阵和异类性的互斥邻接矩阵;然后以两个邻接矩阵作为作用因子分别建立两种不同样本之间的权值矩阵;最后通过这两个度量权值矩阵的相关投影完成数据的降维。在Yale、YaleB和UMIST人脸库的实验验证了该算法的有效性。  相似文献   

4.
一种新的代价敏感分类方法   总被引:1,自引:0,他引:1  
代价敏感学习(cost-sensitive learning)是指在机器学习的过程中考虑不同的误判(misclassification)带来的不同的代价(cost).论文将一项最新的贝叶斯分类研究成果应用到代价敏感学习中,提出了一种新的称之为代价敏感隐藏朴素贝叶斯分类算法.实验表明该方法比另一种典型的代价敏感算法更有效.  相似文献   

5.
阮晓宏  黄小猛  袁鼎荣  段巧灵 《计算机科学》2013,40(Z11):140-142,146
代价敏感学习方法常常假设不同类型的代价能够被转换成统一单位的同种代价,显然构建适当的代价敏感属性选择因子是个挑战。设计了一种新的异构代价敏感决策树分类器算法,该算法充分考虑了不同代价在分裂属性选择中的作用,构建了一种基于异构代价的分裂属性选择模型,设计了基于代价敏感的剪枝标准。实验结果表明,该方法处理代价机制和属性信息的异质性比现有方法更有效。  相似文献   

6.
万建武  杨明 《软件学报》2020,31(1):113-136
分类是机器学习的重要任务之一.传统的分类学习算法追求最低的分类错误率,假设不同类型的错误分类具有相等的损失.然而,在诸如人脸识别门禁系统、软件缺陷预测、多标记学习等应用领域中,不同类型的错误分类所导致的损失差异较大.这要求学习算法对可能导致高错分损失的样本加以重点关注,使得学习模型的整体错分损失最小.为解决该问题,代价敏感学习方法引起了研究者的极大关注.以代价敏感学习方法的理论基础作为切入点,系统阐述了代价敏感学习的主要模型方法以及代表性的应用领域.最后,讨论并展望了未来可能的研究趋势.  相似文献   

7.
局部判别嵌入算法寻求最高的正确识别率时假设所有的错误分类具有相同的错分代价,然而这个假设在现实的人脸识别系统中往往是不成立的,因为不同的错误分类将会导致不同的错分代价.为此,提出一种代价敏感的局部判别嵌入算法.首先通过构造代价矩阵将代价敏感理念融入到特征提取阶段,以提高算法判别不同错误分类的能力;然后最大化异类近邻样本点之间的错分代价,同时最小化同类近邻样本点之间的距离;最后利用迭代算法求得最佳的正交投影向量,以更好地维持数据的度量架构.在Yale,ORL,AR和Extended Yale B人脸数据库上的实验结果表明,文中算法是有效的.  相似文献   

8.
大多数非均衡数据集的研究集中于纯重构数据集或者纯代价敏感学习,本文针对数据集类分布非均衡和不相等误分类代价往往同时发生这一事实,提出了一种以最小误分类代价为目标的基于混合重取样的代价敏感学习算法。该算法将两种不同类型解决方案有机地融合在一起,先用样本类空间重构的方法使原始数据集的两类数据达到基本均衡,然后再引入代价敏感学习算法进行分类,能提高少数类分类精度,同时有效降低总的误分类代价。实验结果验证了该算法在处理非均衡类问题时比传统算法要优越。  相似文献   

9.
周尔昊  高尚 《计算机与数字工程》2021,49(9):1763-1766,1883
分类器集成通过将弱学习器提升为强学习器,提高了分类器分类的准确性.但当它面对不平衡数据问题时,虽然比单个分类器效果要好,但依旧无法达到预期效果.基于此提出了一种代价敏感的旋转森林算法(CROF),利用旋转森林进行数据预处理,并将代价函数引入基分类器构造中,最终获得面向不平衡数据问题的新的集成分类器.经实验表明,CROF...  相似文献   

10.
一种基于代价敏感学习的范例推理方法及其应用研究   总被引:4,自引:0,他引:4  
提出一种基于代价敏感学习的范例推理方法,可以对大规模、高维数据进行分类和预测。该算法在分类的同时,不断调整数据属性项权重,以减少由分类引起的误分代价。在某入侵检测数据分析中取得了较好的结果。  相似文献   

11.
针对基于图嵌入的鉴别投影方法对近邻参数的敏感以及实际应用中样本类别信息不足对图嵌入方法鉴别性能的影响,提出一种基于自适应近邻选择和低秩表示的半监督鉴别分析方法.该方法利用所有类内样本点构造类内图来描述类内样本的紧致性,借助最远类内样本的邻域自适应地选取该邻域内不同类样本点构造类间图,以描述类间样本的可分性;此外,利用低秩表示方法挖掘不带类别信息样本的潜在低秩结构,以保留样本的全局相似关系.在ORL和FERET人脸数据库上的实验结果,验证了文中方法的有效性及对噪声的鲁棒性.  相似文献   

12.
作为一种常用的降维方法,适用于小样本的监督化拉普拉斯判别分析方法通过使用图嵌入的判别近邻分析得到了很好的降维效果。但该方法在构建近邻图时,在K近邻中寻找同类和异类样本点存在数据不平衡问题;此外,在优化该方法的目标函数时,没有全面考虑到类间信息,从而会在一定程度上降低该方法的性能。针对以上两个问题,本文提出了适用于小样本的双邻接图判别分析方法。首先该方法分别在同类和异类样本中找出K个近邻点,然后使用这K个类内近邻点和K个类间近邻点来构造双邻接图,这样可以确保邻接图中既有同类样本点也有异类样本点,且数目相同。然后该方法在目标函数的推导结果中加入了类间拉普拉斯散度矩阵,从而使优化得到的投影矩阵融入更多的类间信息。在Yale和ORL人脸数据集上进行实验,并与同类方法相比,结果表明本文提出的适用于小样本的双邻接图判别分析方法能够得到更好的降维效果。  相似文献   

13.
在多模数据分类中,使用局部Fisher判别分析和边界Fisher分析方法构建邻域不能充分反映流形学习对邻域的要求.为此,提出一种基于自适应邻域选择的局部判别投影算法.采用自适应方法扩大或者缩小近邻系数k,以构建邻域,从而保持局部线性结构,揭示流形的内在几何结构,利用局部化方法使得投影空间中同类近邻样本尽量紧凑、异类近邻样本尽量分开.在ORL和YALE入脸数据库中进行实验,结果表明,在不同训练样本个数下,该算法均能获得较高的识别率.  相似文献   

14.
为了提取具有较好判别性能的低维特征,提出了一种新的有监督的线性降维算法——边界判别投影,即,最小化同类样本间的最大距离,最大化异类样本间的最小距离,同时保持数据流形的几何形状.与经典的基于边界定义的算法相比,边界判别投影可以较好地保持数据流形的几何结构和判别结构等全局特性,可避免小样本问题,具有较低的计算复杂度,可应用于超高维的大数据降维.人脸数据集上的实验结果表明,边界判别分析是一种有效的降维算法,可应用于大数据上的特征提取.  相似文献   

15.
子空间半监督Fisher判别分析   总被引:1,自引:2,他引:1  
杨武夷  梁伟  辛乐  张树武 《自动化学报》2009,35(12):1513-1519
Fisher判别分析寻找一个使样本数据类间散度与样本数据类内散度比值最大的子空间, 是一种很流行的监督式特征降维方法. 标注样本数据所属的类别通常需要大量的人工, 消耗大量的时间, 付出昂贵的成本. 为了解决同时利用有类别信息的样本数据和没有类别信息的样本数据用于寻找降维子空间的问题, 我们提出了一种子空间半监督Fisher判别分析方法. 子空间半监督Fisher判别分析寻找这样一个子空间, 这个子空间即保留了从有类别信息的样本数据中学习的类别判别结构, 也保留了从有类别信息的样本数据和没有类别信息的样本数据中学习的样本结构信息. 我们还推导了基于核的子空间半监督Fisher判别分析方法. 通过人脸识别实验验证了本文算法的有效性.  相似文献   

16.
保持近邻投影是一种无监督线性降维方法,具有保持数据流形上局部近邻结构特性,但应用到分类任务时具有局限性,如忽略类标签的信息。该文提出一种新的人脸识别子空间学习方法——监督保持近邻投影,根据先验的类标签信息保持局部几何关系,能获得较好的近似人脸流形以及增强特征空间的判别力。在ORL人脸数据库上的实验表明该方法是有效的。  相似文献   

17.
桑凤娟  张贵仓 《计算机工程》2012,38(20):124-127
边界Fisher判别分析算法因采用一维向量表示而无法很好保持图像的空间几何结构,且无法利用大量未标记样本信息.为此,提出一种基于张量的半监督判别分析算法.采用二维张量表示人脸空间中的样本图像,揭示流形的内在几何结构,利用有判别信息的标记样本和大量未标记样本,使数据在投影空间的类间分离度最大,同时保证高维空间中不相邻的点在低维空间中也不相邻.在PIE和FERET人脸库上的实验结果表明,该算法能够获得较高的识别率.  相似文献   

18.
张量局部Fisher判别分析的人脸识别   总被引:3,自引:0,他引:3  
子空间特征提取是人脸识别中的关键技术之一,结合局部Fisher判别分析技术和张量子空间分析技术的优点, 本文提出了一种新的张量局部Fisher判别分析(Tensor local Fisher discriminant analysis, TLFDA)子空间降维技术. 首先,通过对局部Fisher判别技术进行分析,调整了其类间散度目标泛函, 使算法的识别性能更高且时间复杂度更低;其次,引入张量型降维技术对输入数据进行双边投影变换而非单边投影, 获得了更高的数据压缩率;最后,采用迭代更新的方法计算最优的变换矩阵.通过ORL和PIE两个人脸库验证了所提算法的有效性.  相似文献   

19.
针对高维输入数据维数较大时可能存在奇异值问题,同时为提高算法的运算效率以及算法的鲁棒性,提出了一种基于L1范数的分块二维局部保持投影算法B2DLPP-L1。传统的局部保持投影算法为避免出现奇异值问题,首先运用主成分分析算法将高维数据投影到子空间中,然而这种方式将会造成高维数据中部分有效信息的流失,B2DLPP-L1算法选择将二维数据直接作为输入数据,避免运用向量形式的输入数据时可能造成的数据流失;同时该算法对二维输入数据进行分块处理,将分块后的数据块作为新的输入数据,之后运用基于L1范数的二维局部保持投影算法对其进行降维。理论上,B2DLPP-L1算法能够较好地对数据进行降维,不仅能够保持高维数据中的有效信息,降低计算复杂程度,提高算法的运行效率,同时还能够克服存在外点情况下分类准确率较低问题,提高算法的鲁棒性。通过选择不同的人脸数据库进行实验,实验结果表明,在存在外点的情况下,运用最近邻分类器时能够取得更高的分类准确率,同时所需的分类时间有所减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号