首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Object

Imaging of myocardial infarct composition is essential to assess efficacy of emerging therapeutics. T 2 * mapping has the potential to image myocardial hemorrhage and fibrosis by virtue of its short T 2 * . We aimed to quantify T 2 * in acute and chronic myocardial ischemia/reperfusion (I/R) injury in mice.

Materials and methods

I/R-injury was induced in C57BL/6 mice (n?=?9). Sham-operated mice (n?=?8) served as controls. MRI was performed at baseline, and 1, 7 and 28?days after surgery. MRI at 9.4?T consisted of Cine, T 2 * mapping and late-gadolinium-enhancement (LGE). Mice (n?=?6) were histologically assessed for hemorrhage and collagen in the fibrotic scar.

Results

Baseline T 2 * values were 17.1?±?2.0?ms. At day 1, LGE displayed a homogeneous infarct enhancement. T 2 * in infarct (12.0?±?1.1?ms) and remote myocardium (13.9?±?0.8?ms) was lower than at baseline. On days 7 and 28, LGE was heterogeneous. T 2 * in the infarct decreased to 7.9?±?0.7 and 6.4?±?0.7?ms, whereas T 2 * values in the remote myocardium were 14.2?±?1.1 and 15.6?±?1.0?ms. Histology revealed deposition of iron and collagen in parallel with decreased T 2 * .

Conclusion

T 2 * values are dynamic during infarct development and decrease significantly during scar maturation. In the acute phase, T 2 * values in infarcted myocardium differ significantly from those in the chronic phase. T 2 * mapping was able to confirm the presence of a chronic infarction in cases where LGE was inconclusive. Hence, T 2 * may be used to discriminate between acute and chronic infarctions.  相似文献   

2.

Objective

This study aimed to investigate the reliability of intravoxel incoherent motion (IVIM) model derived parameters D and f and their dependence on b value distributions with a rapid three b value acquisition protocol.

Materials and methods

Diffusion models for brain, kidney, and liver were assessed for bias, error, and reproducibility for the estimated IVIM parameters using b values 0 and 1000, and a b value between 200 and 900, at signal-to-noise ratios (SNR) 40, 55, and 80. Relative errors were used to estimate optimal b value distributions for each tissue scenario. Sixteen volunteers underwent brain DW-MRI, for which bias and coefficient of variation were determined in the grey matter.

Results

Bias had a large influence in the estimation of D and f for the low-perfused brain model, particularly at lower b values, with the same trends being confirmed by in vivo imaging. Significant differences were demonstrated in vivo for estimation of D (P = 0.029) and f (P < 0.001) with [300,1000] and [500,1000] distributions. The effect of bias was considerably lower for the high-perfused models. The optimal b value distributions were estimated to be brain500,1000, kidney300,1000, and liver200,1000.

Conclusion

IVIM parameters can be estimated using a rapid DW-MRI protocol, where the optimal b value distribution depends on tissue characteristics and compromise between bias and variability.
  相似文献   

3.

Object

To investigate the potential of a clinical 3 T scanner to perform MRI of small rodents.

Materials and methods

Different dedicated small animal coils and several imaging sequences were evaluated to optimize image quality with respect to SNR, contrast and spatial resolution. As an application, optimal grey-white-matter contrast and resolution were investigated for rats. Furthermore, manganese-enhanced MRI was applied in mice with unilateral crush injury of the optic nerve to investigate coil performance on topographic mapping of the visual projection.

Results

Differences in SNR and CNR up to factor 3 and more were observed between the investigated coils. The best grey-white matter contrast was achieved with a high resolution 3D T 2-weighted TSE (SPACE) sequence. Delineation of the retino-tectal projection and detection of defined visual pathway damage on the level of the optic nerve could be achieved by using a T 1-weighted, 3D gradient echo sequence with isotropic resolution of (0.2?mm)3.

Conclusions

Experimental studies in small rodents requiring high spatial resolution can be performed by using a clinical 3 T scanner with appropriate dedicated coils.  相似文献   

4.

Objectives

The aim of this study was to investigate the effect of the temporal resolution (T res) and acquisition duration (AD) on the measurement accuracy of contrast concentration–time curves (CTCs), and derived phenomenological and pharmacokinetic parameter values, in a dynamic contrast-enhanced MRI experiment using a novel phantom test device.

Materials and methods

‘Ground truth’ CTCs were established using a highly precise optical imaging system. These precisely known CTCs were produced in an anthropomorphic environment, which mimicked the male pelvic region, and presented to the MRI scanner for measurement. The T res was varied in the range [2–24.4 s] and the AD in the range [30–600 s], and the effects on the measurement accuracy were quantified.

Results

For wash-in parameter measurements, large underestimation errors (up to 40%) were found using T res values ≥16.3 s; however, the measured wash-out rate did not vary greatly across all T res values tested. Errors in derived K trans and v e values were below 14 and 12% for acquisitions with {T res ≤ 8.1 s, AD ≥ 360 s} and {T res ≤ 16.3 s, AD ≥ 360 s}, respectively, but increased dramatically outside these ranges.

Conclusions

Errors in measured wash-in, wash-out, K trans, and v e parameters were minimised using T res ≤ 8.1 s and AD ≥ 360 s, with large errors recorded outside of this range.
  相似文献   

5.

Objective

To quantify hepatocellular carcinoma (HCC) perfusion and flow with the fast exchange regime-allowed Shutter-Speed model (SSM) compared to the Tofts model (TM).

Materials and methods

In this prospective study, 25 patients with HCC underwent DCE-MRI. ROIs were placed in liver parenchyma, portal vein, aorta and HCC lesions. Signal intensities were analyzed employing dual-input TM and SSM models. ART (arterial fraction), K trans (contrast agent transfer rate constant from plasma to extravascular extracellular space), v e (extravascular extracellular volume fraction), k ep (contrast agent intravasation rate constant), and τ i (mean intracellular water molecule lifetime) were compared between liver parenchyma and HCC, and ART, K trans, v e and k ep were compared between models using Wilcoxon tests and limits of agreement. Test–retest reproducibility was assessed in 10 patients.

Results

ART and v e obtained with TM; ART, v e , k e and τ i obtained with SSM were significantly different between liver parenchyma and HCC (p < 0.04). Parameters showed variable reproducibility (CV range 14.7–66.5 % for both models). Liver K trans and v e ; HCC v e and k ep were significantly different when estimated with the two models (p < 0.03).

Conclusion

Our results show differences when computed between the TM and the SSM. However, these differences are smaller than parameter reproducibilities and may be of limited clinical significance.
  相似文献   

6.

Object

Pharmacokinetic parameters from dynamic contrast-enhanced MRI (DCE-MRI) were used to assess the perfusion effects due to treatment response using a tyrosine kinase inhibitor. A Bayesian hierarchical model (BHM) is proposed, as an alternative to voxel-wise estimation procedures, to test for a treatment effect while explicitly modeling known sources of variability.

Materials and methods

Nine subjects from a randomized, blinded, placebo-controlled, multicenter, phase II study of lapatinib were examined before and after treatment. Kinetic parameters were estimated, with an extended compartmental model and subject-specific arterial input function, on a voxel-by-voxel basis.

Results

The group treated with lapatinib had a decrease in median K trans of 0.17min??, when averaged across all voxels in the tumor ROIs, compared with no change in the placebo group based on nonlinear regression. A hypothesis test of equality between pre- and posttreatment K trans could not be rejected against a one-sided alternative (P = 0.09). Equality between median K trans in placebo and lapatinib groups posttreatment could also not be rejected using the BHM (P = 0.32). Across all scans acquired in the study, estimates of K trans at one site were greater on average than those at the other site by including a site effect in the BHM. The inter-voxel variability is of similar order (within 15%) when compared to the inter-patient variability.

Conclusion

Though the study contained a small number of subjects and no significant difference was found, the Bayesian hierarchical model provided estimates of variability from known sources in the study and confidence intervals for all estimated parameters. We believe the BHM provides a straightforward and thorough interrogation of the imaging data at the level of voxels, patients or sites in this multicenter clinical study.  相似文献   

7.
In vivo chlorine and sodium MRI of rat brain at 21.1 T   总被引:1,自引:1,他引:0  

Object

MR imaging of low-gamma nuclei at the ultrahigh magnetic field of 21.1 T provides a new opportunity for understanding a variety of biological processes. Among these, chlorine and sodium are attracting attention for their involvement in brain function and cancer development.

Materials and methods

MRI of 35Cl and 23Na were performed and relaxation times were measured in vivo in normal rat (n = 3) and in rat with glioma (n = 3) at 21.1 T. The concentrations of both nuclei were evaluated using the center-out back-projection method.

Results

T 1 relaxation curve of chlorine in normal rat head was fitted by bi-exponential function (T 1a = 4.8 ms (0.7) T 1b = 24.4 ± 7 ms (0.3) and compared with sodium (T 1 = 41.4 ms). Free induction decays (FID) of chlorine and sodium in vivo were bi-exponential with similar rapidly decaying components of $ T_{{2{\text{a}}}}^{*} = 0.4 $  ms and $ T_{{2{\text{a}}}}^{*} = 0.53 $  ms, respectively. Effects of small acquisition matrix and bi-exponential FIDs were assessed for quantification of chlorine (33.2 mM) and sodium (44.4 mM) in rat brain.

Conclusion

The study modeled a dramatic effect of the bi-exponential decay on MRI results. The revealed increased chlorine concentration in glioma (~1.5 times) relative to a normal brain correlates with the hypothesis asserting the importance of chlorine for tumor progression.  相似文献   

8.

Objective

Intravoxel incoherent motion (IVIM) shows great potential in many applications, e.g., tumor tissue characterization. To reduce image-quality demands, various IVIM analysis approaches restricted to the diffusion coefficient (D) and the perfusion fraction (f) are increasingly being employed. In this work, the impact of estimation approach for D and f is studied.

Materials and methods

Four approaches for estimating D and f were studied: segmented IVIM fitting, least-squares fitting of a simplified IVIM model (sIVIM), and Bayesian fitting of the sIVIM model using marginal posterior modes or posterior means. The estimation approaches were evaluated in terms of bias and variability as well as ability for differentiation between tumor and healthy liver tissue using simulated and in vivo data.

Results

All estimation approaches had similar variability and ability for differentiation and negligible bias, except for the Bayesian posterior mean of f, which was substantially biased. Combined use of D and f improved tumor-to-liver tissue differentiation compared with using D or f separately.

Discussion

The similar performance between estimation approaches renders the segmented one preferable due to lower numerical complexity and shorter computational time. Superior tissue differentiation when combining D and f suggests complementary biologically relevant information.
  相似文献   

9.

Objective

The purpose of this study was to assess changes in the tumor microvasculature induced by combination antiangiogenic therapy in MCF-7 breast tumor mouse models, using a noninvasive DCE-MRI method that minimizes the effect of water exchange.

Materials and methods

3D quantitative DCE-MRI images were acquired with a heavily T 1-weighted saturation recovery gradient echo sequence with a recovery delay of 20 ms. Tumor vascular volume (VV) and vascular permeability-surface area product (PS) were obtained through a linear regression of the albumin-Gd-DTPA-enhanced dynamic image intensity on MCF-7 breast tumor mouse models treated with combination bevacizumab/paclitaxel therapy.

Results

Measured tumor VV values were significantly higher than the values that have been reported previously using quantitative T 1 mapping, and are in good agreement with micro-CT (computed tomography) results reported earlier from other tumor models. A trend of decreasing tumor PS was detected in the group of MCF-7 tumor bearing mice treated with the bevacizumab/paclitaxel combination regimen.

Conclusion

VV and PS maps obtained by a heavily T 1-weighted acquisition protocol revealed the large peripheral blood vessels as well as the permeable areas within the tumor. A 12-day/three-dose combination treatment of bevacizumab and paclitaxel resulted in delayed tumor growth and a trend of decreasing tumor vascular permeability surface area product.  相似文献   

10.

Object

Implementation of an accelerated Magnetization Prepared RApid Gradient Echo (MP-RAGE) sequence for T1 weighted neuroimaging; exploiting modern MRI technologies to minimize scan time while preserving the image quality.

Materials and methods

A custom MP-RAGE sequence was implemented on a state-of-the-art 3T MR scanner equipped with a 32-channel receiver array head coil. The sequence utilized a shifted CAIPIRINHA k y k z under-sampling pattern combined with elliptical scanning and a two-dimensional view ordering scheme to achieve high parallel imaging acceleration factors at maintained image contrast.

Results

It could be shown that MP-RAGE accelerated in two k-space directions outperforms single direction acceleration, which is the common practice with standard view ordering. Applying the CAIPIRINHA technique in conjunction with elliptical scanning further increased this benefit.

Conclusion

By combining MP-RAGE with CAIPIRINHA sampling and elliptical scanning, the scan time can be reduced from 4–5 min to 2–3 min with insignificant reduction in image quality.  相似文献   

11.

Objective

To explore the relationship between relative enhanced diffusivity (RED) and intravoxel incoherent motion (IVIM), as well as the impact of noise and the choice of intermediate diffusion weighting (b value) on the RED parameter.

Materials and methods

A mathematical derivation was performed to cast RED in terms of the IVIM parameters. Noise analysis and b value optimization was conducted by using Monte Carlo calculations to generate diffusion-weighted imaging data appropriate to breast and liver tissue at three different signal-to-noise ratios.

Results

RED was shown to be approximately linearly proportional to the IVIM parameter f, inversely proportional to D and to follow an inverse exponential decay with respect to D*. The choice of intermediate b value was shown to be important in minimizing the impact of noise on RED and in maximizing its discriminatory power. RED was shown to be essentially a reparameterization of the IVIM estimates for f and D obtained with three b values.

Conclusion

RED imaging in the breast and liver should be performed with intermediate b values of 100 and 50 s/mm2, respectively. Future clinical studies involving RED should also estimate the IVIM parameters f and D using three b values for comparison.
  相似文献   

12.
The dielectric property and thermal expansion property of Bi2O3-ZnO-Nb2O3-based (BZN) ceramics filler reinforced composites have been investigated as a function of temperature range from ?50 to 175 °C. The composites with adjustable temperature coefficient of frequency (τ f ) and dielectric temperature coefficient ( $ \alpha _{\varepsilon } $ ) are achieved by filling the ceramic filler with different $ \alpha _{\varepsilon } $ into polymer matrix. A series of polytetrafluoroethylene (PTFE) based composites blended with different amount of ceramic filler with different $ \alpha _{\varepsilon } $ have been studied in this paper. The results indicated that with the amount of ceramic filler increasing, both of the relative permittivity and dissipation factor of composites increased. Composite filled with positive $ \alpha _{\varepsilon } $ (245 ppm/°C) BZN ceramic filler (40 vol.%) has low $ \alpha _{\varepsilon } $ (22 ppm/°C), while filled with near-zero $ \alpha _{\varepsilon } $ (10 ppm/°C) BZN ceramic filler (40 vol.%) have low τ f (?5 ppm/°C).  相似文献   

13.

Object

To determine the single spin-echo T 2 relaxation times of uncoupled and J-coupled metabolites in rat brain in vivo at 14.1 T and to compare these results with those previously obtained at 9.4 T.

Materials and methods

Measurements were performed on five rats at 14.1 T using the SPECIAL sequence and TE-specific basis-sets for LCModel analysis.

Results and conclusion

The T 2 of singlets ranged from 98 to 148 ms and T 2 of J-coupled metabolites ranged from 72 ms (glutamate) to 97 ms (myo-inositol). When comparing the T 2s of the metabolites measured at 14.1 T with those previously measured at 9.4 T, a decreasing trend was found (p < 0.0001). We conclude that the modest shortening of T 2 at 14.1 T has a negligible impact on the sensitivity of the 1H MRS when performed at TE shorter than 10 ms.  相似文献   

14.

Object

A triple-resonant coil setup with an 1H linear resonator and a double-tuned 23Na/35Cl surface coil was used to study the evolution of T 2 * and M 0 for 35Cl and 23Na in a rat stroke model during the acute phase at 9.4 Tesla.

Materials and methods

In vivo measurements were performed 1.5–7 h after onset of stroke (n = 2), ten days after onset (n = 1) and on a healthy control rat by a chemical shift imaging sequence. Measurement times were 15 min (23Na) and 57 min (35Cl).

Results

The relaxation times ten days after onset [T 2 *  = 14.3 ± 1.8 ms (23Na) and 6.0 ± 1.3 ms (35Cl)] are clearly prolonged in comparison to a healthy rat [T 2 *  = 4.8 ± 0.6 ms (23Na) and 2.1 ± 0.3 ms (35Cl)] and the acute phase [T 2 *  = 5.6 ± 0.2 ms (23Na) and 1.9 ± 0.1 ms (35Cl)].

Conclusion

M 0 in the infarcted region clearly rises later and slower for chlorine than for sodium. To the best of our knowledge, these are the first combined proton, sodium, and chlorine measurements in an animal stroke model during the acute phase.  相似文献   

15.

Object

Ultra-high field (UHF) neuroimaging is usually conducted with volume transmit (Tx) and phased array receive (Rx) coils, both tightly enclosing the object. The travelling-wave (TW) concept allows a remote excitation offering more flexible experimental setups. To investigate the feasibility of primate MRI in horizontal UHF MRI, we first compared the distribution of the electromagnetic fields in an oil phantom and then verified the concept with an in vivo experiment.

Materials and methods

In the phantom experiments an in-house circularly polarized hybrid birdcage coil and a self-developed patch antenna were used for Tx and an eight-element phased array antenna for Rx. B 1 + fields were calculated and measured for both approaches. For in vivo experiments the Rx part was replaced with an optimized three-element phased array head coil. The SAR was calculated using field simulation.

Results

In the phantom the field distribution was homogenous in a central volume of interest of about 10 cm diameter. The TW concept showed a slightly better homogeneity. Examination of a female crab-eating macaque led to homogeneous high-contrast images with a good delineation of anatomical details.

Conclusion

The TW concept opens up a new approach for MRI of medium-sized animals in horizontal UHF scanners.  相似文献   

16.

Object

The nuclear magnetic resonance (NMR) mobile-universal-surface-explorer (MOUSE) was evaluated in a pilot study to determine its ability to detect physiological changes in human skin caused by physical or pharmacological interventions.

Materials and methods

The left lower arm skin thicknesses of ten male subjects were measured five times using a Profile NMR-MOUSE? (1H, 19?MHz) before and after a venous occlusion manoeuvre. In five of the subjects, the T2eff relaxation times were derived from a bi-exponential fitting and were determined in the dermis and subcutis before and after applying a salve containing capsaicin.

Results

The dermis (including the epidermis) showed rather homogeneous signal amplitudes. The subcutis was characterised by higher and more variable amplitudes. The full-skin thickness values were affirmed by ultrasound imaging. The NMR profiles did not show significant skin swelling due to venous occlusion. In the dermis, capsaicin caused significant (p?<?0.05) decreases in both components of T 2eff (100?±?19?ms?C19?±?10?ms; 9.5?±?0.5?ms?C7.2?±?1.6?ms). In the subcutis, the T 2eff was not affected.

Conclusion

In principle, NMR-MOUSE profiles are capable of detecting skin structure. However, precise measurements are jeopardised by poor reproducibility, long acquisition times, and incompatibility between the geometries of the sensitive area of the instrument and the non-planar structure of the skin. In the dermis, T 2eff contrast could be used to detect the changes in tissue composition caused by inflammatory reactions.  相似文献   

17.
In this paper, the structural and magnetic properties of La0.75Sr0.25-xKxCoO3 (0≤x≤0.15) powder samples are reported. X-ray diffraction analysis using Rietveld refinement show that all our samples crystallize in the rhombohedral structure with \( R\overline{3}c \) space group. At low temperatures, with increasing K amount, the samples change from ferromagnetic like behavior (x?=?0, 0.05 and 0.1) to spin glass one (x?=?0.15). The ferromagnetic-paramagnetic transition temperature decreases with increasing K amount from 235K (x?=?0) to 200K (x?=?0.1). In the paramagnetic phase, all our synthesized samples obey the Curie-Weiss law. In the vicinity of TC, the magnetic entropy change |ΔS M | for La0.75Sr0.2K0.05CoO3 sample reached maximum values of 0.47Jkg/K and 2.27Jkg/K under magnetic field variation in the range 1T and 7T, respectively. The magnetization hysteresis loops demonstrate a weakening the ferromagnetism with increasing K content.  相似文献   

18.

Object

High-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy provides detailed metabolomic information from intact tissue. However, long acquisition times and high rotation speed may lead to time-dependent spectral pattern changes, which may affect proper interpretation of results. We report a strategy to minimize those changes, even at physiological recording temperature.

Materials and methods

Glioblastoma (Gbm) tumours were induced in 12 mice by stereotactic injection of GL261 cells. Animals were sacrificed and tumours were removed and stored in liquid N2. Half of the samples were exposed to focused microwave (FMW) irradiation prior to HRMAS while the other half was not. Time-course experiments (374?min at 37°C, 9.4T, 3,000?Hz spinning rate) were carried out to monitor spectral pattern changes. Differences were assessed with Unianova test while post-HRMAS histopathology analysis was performed to assess tissue integrity.

Results

Significant changes (up to 1.7 fold) were observed in samples without FMW irradiation in several spectral regions e.g. mobile lipids/lactate (0.90–1.30?ppm), acetate (1.90?ppm), N-acetyl aspartate (2.00?ppm), and Choline-containing compounds (3.19–3.25?ppm). No significant changes in the spectral pattern of FMW-irradiated samples were recorded.

Conclusion

We describe here a successful strategy to minimize spectral pattern changes in mouse Gbm samples using a FMW irradiation system.  相似文献   

19.

Object

Delta relaxation enhanced magnetic resonance (dreMR) is a new imaging technique based on the idea of cycling the magnetic field B 0 during an imaging sequence. The method determines the field dependency of the relaxation rate (relaxation dispersion dR 1/dB). This quantity is of particular interest in contrast agent imaging because the parameter can be used to determine contrast agent concentrations and increases the ability to localize the contrast agent.

Materials and methods

In this paper dreMR imaging was implemented on a clinical 1.5?T MR scanner combining conventional MR imaging with fast field-cycling. Two improvements to dreMR theory are presented describing the quantification of contrast agent concentrations from dreMR data and a correction for field-cycling with finite ramp times.

Results

Experiments demonstrate the use of the extended theory and show the measurement of contrast agent concentrations with the dreMR method. A second experiment performs localization of a contrast agent with a significant improvement in comparison to conventional imaging.

Conclusion

dreMR imaging has been extended by a method to quantify contrast agent concentrations and improved for field-cycling with finite ramp times. Robust localization of contrast agents using dreMR imaging has been performed in a sample where conventional imaging delivers inconclusive results.  相似文献   

20.

Objective

This study aims to explore the relationship between plaque surface morphology and neovascularization using a high temporal and spatial resolution 4D contrast-enhanced MRI/MRA sequence.

Materials and methods

Twenty one patients with either recent symptoms or a carotid artery stenosis ≥40% were recruited in this study. Plaque surface morphology and luminal stenosis were determined from the arterial phase MRA images. Carotid neovascularization was evaluated by a previously validated pharmacokinetic (PK) modeling approach. K trans (transfer constant) and v p (partial plasma volume) were calculated in both the adventitia and plaque.

Results

Image acquisition and analysis was successfully performed in 28 arteries. Mean luminal stenosis was 44% (range 11–82%). Both adventitial and plaque K trans in ulcerated/irregular plaques were significantly higher than smooth plaques (0.079 ± 0.018 vs. 0.064 ± 0.011 min?1, p = 0.02; 0.065 ± 0.013 vs. 0.055 ± 0.010 min?1, p = 0.03, respectively). Positive correlations between adventitial K trans and v p against stenosis were observed (r = 0.44, p = 0.02; r = 0.55, p = 0.01, respectively).

Conclusion

This study demonstrates the feasibility of using a single sequence to acquire both high resolution 4D CE-MRA and DCE-MRI to evaluate both plaque surface morphology and function. The results demonstrate significant relationships between lumen surface morphology and neovascularization.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号