首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of thermally stimulated depolarization current (TSDC) using the dipole–dipole interaction model is describedin this work. The dipole–dipole interaction model (DDIM) determines the TSDC peak successfully since it gives significant peak parameters (i.e. activation energy (E{\bf \textit{E}}) and pre-exponential factor (t0){\boldsymbol\tau}_{{\bf 0}})) in addition to the dipole–dipole interaction strength parameter (di){\bf \textit{d}}_{{\bf i}}). Application of this model to study the peak parameters of some polymeric systems is presented.  相似文献   

2.
LaFe 11·6 Si 1·4 compounds are annealed at different high temperatures from 1323 to 1623?K. The powder X-ray diffraction patterns show that large amount of NaZn13-type phase begins to be observed in LaFe 11·6 Si 1·4 compound after being annealed at 1423?K for 5?h. In the temperature range from 1423 to 1523?K, the $\boldsymbol{\alpha} $ -Fe and LaFeSi phases rapidly decrease to form 1:13 phase. LaFeSi phase is rarely observed in the XRD pattern in the LaFe 11·6 Si 1·4 compound annealed at 1523?K (5?h). With annealing temperature increasing to 1573?K and 1673?K, La 5 Si 3 phase is detected, and there is a certain amount of LaFeSi phase when the annealing temperature is 1673?K. The amount of impurity phases in the LaFe 11·6 Si 1·4 compound annealed by the two-stage annealing consisting of high temperature ( $\boldsymbol{>}$ 1523?K) and 1523?K is larger than that of the single stage annealing at 1523?K under the same time. According to the results of different high-temperature annealing, LaFe $_{{\bf 11{\cdot}6}-\boldsymbol{x}}$ Co $_{\boldsymbol{x}}$ Si 1·4 ( $\boldsymbol{0{\cdot}1} \boldsymbol{\le} \boldsymbol{x} \boldsymbol{\le} \boldsymbol{0{\cdot}8}$ ) compounds are annealed at 1523?K (5?h). The main phase is NaZn13-type phase, and the impurity phase is a small amount of $\boldsymbol{\alpha} $ -Fe in LaFe $_{{\bf 11{\cdot}6}-\boldsymbol{x}}$ Co $_{\boldsymbol{x}}$ Si 1·4 compounds. With increase in Co content from $\boldsymbol{x} \boldsymbol{=} \boldsymbol{0{\cdot}1}$ to $\boldsymbol{0{\cdot}8}$ , the Curie temperature $\boldsymbol{T}_{\!\boldsymbol{\rm C}}$ , goes up from 207 to 285?K. The introduction of Co element weakens the itinerant electron metamagnetic transition, and also results in the change of magnetic transition type from first to second order at about $\boldsymbol{x = 0{\cdot}5}$ . The magnetic entropy change decreases from 19·94 to 4·57?J /kg K with increasing Co concentration at a low magnetic field of 0?C2?T. But the magnetic hysteresis loss around $\boldsymbol{T}_{\!\boldsymbol{\rm C}}$ reduces remarkably from 26·2?J /kg for $\boldsymbol{x = 0{\cdot}1}$ to 0?J /kg for $\boldsymbol{x} \boldsymbol{=} \bf 0{\cdot}8$ .  相似文献   

3.
The influence of phosphorus doping on the properties of $ \alpha^{\prime}_{\text{H}} $ -dicalcium silicate (C2S) bone cement was analyzed, in addition to bioactivity and biocompatibility. All the cements were composed of a solid solution of TCP in C2S ( $ \alpha^{\prime}_{\text{H}} $ -C2Sss) as the only phase present. The compressive strength ranged from 3.8–16.3 MPa. Final setting times ranged from 10 to 50 min and were lower for cements with lower L/P content. Calcium silicate hydrate was the principal phase formed during the hydration process of the cements. The cement exhibited a moderate degradation and could induce carbonated hydroxyapatite formation on its surface and into the pores. The cell attachment test showed that the $ \alpha^{\prime}_{\text{H}} $ -Ca2SiO4 solid solution supported human adipose stem cells adhesion and spreading, and the cells established close contacts with the cement after 24 h of culture. The novel $ \alpha^{\prime}_{\text{H}} $ -C2Sss cements might be suitable for potential applications in the biomedical field, preferentially as materials for bone/dental repair.  相似文献   

4.
A comparative study of spherical and rod-like nanocrystalline Gd $_{\boldsymbol 2}$ O $_{\boldsymbol 3}$ :Eu $^{\boldsymbol{3+}}$ (Gd $_{\boldsymbol{1\cdot92}}$ Eu $_{\boldsymbol{0\cdot08}}$ O $_{\boldsymbol 3}$ ) red phosphors prepared by solution combustion and hydrothermal methods have been reported. Powder X-ray diffraction (PXRD) results confirm the as-formed product in combustion method showing mixed phase of monoclinic and cubic of Gd $_{\boldsymbol 2}$ O $_{\boldsymbol 3}$ :Eu $^{\boldsymbol{3+}}$ . Upon calcinations at 800 $^{\boldsymbol\circ}$ C for 3?h, dominant cubic phase was achieved. The as-formed precursor hydrothermal product shows hexagonal Gd(OH) $_{\boldsymbol 3}$ :Eu $^{\boldsymbol{3+}}$ phase and it converts to pure cubic phase of Gd $_{\boldsymbol 2}$ O $_{\boldsymbol 3}$ :Eu $^{\boldsymbol{3+}}$ on calcination at 600 $^{\boldsymbol \circ}$ C for 3?h. TEM micrographs of hydrothermally prepared cubic Gd $_{\boldsymbol 2}$ O $_{\boldsymbol 3}$ :Eu $^{\boldsymbol{3+}}$ phase shows nanorods with a diameter of 15?nm and length varying from 50 to 150?nm, whereas combustion product shows the particles to be of irregular shape, with different sizes in the range 50?C250?nm. Dominant red emission (612?nm) was observed in cubic Gd $_{\boldsymbol 2}$ O $_{\boldsymbol 3}$ :Eu $^{\boldsymbol{3+}}$ which has been assigned to $^{\boldsymbol 5}{\bf \textit{D}}_{\boldsymbol 0}$ $\boldsymbol \to$ $^{\boldsymbol 7}{\bf \textit{F}}_{\boldsymbol 2}$ transition. However, in hexagonal Gd(OH) $_{\boldsymbol 3}$ :Eu $^{\boldsymbol{3+}}$ , emission peaks at 614 and 621?nm were observed. The strong red emission of cubic Gd $_{\boldsymbol 2}$ O $_{\boldsymbol 3}$ :Eu $^{\boldsymbol{3+}}$ nanophosphors by hydrothermal method are promising for high performance display materials. The variation in optical energy bandgap ( $\boldsymbol{E}_{\boldsymbol{\rm g}}$ ) was noticed in as-formed and heat treated systems in both the techniques. This is due to more ordered structure in heat treated samples and reduction in structural defects.  相似文献   

5.
We report the optimization and usage of surfactantless, water dispersible Ag and Au-coated g\boldsymbol\gamma–Fe2_{\boldsymbol 2}O3_{\boldsymbol 3} nanoparticles for applications in surface-enhanced Raman scattering (SERS). These nanoparticles, with plasmonic as well as super paramagnetic properties exhibit Raman enhancement factors of the order of 106 (105) for Ag (Au) coating, which are on par with the conventional Ag and Au nanoparticles. Raman markers like 2-naphthalenethiol, rhodamine-B and rhodamine-6G have been adsorbed to these nanoparticles and tested for nonresonant SERS at low concentrations. Further, to confirm the robustness of Ag-coated nanoparticles, we have performed temperature-dependent SERS in the temperature range of 77–473 K. The adsorbed molecules exhibit stable SERS spectra except at temperatures $\boldsymbol >$\boldsymbol >323 K, where the thermal desorption of test molecule (naphthalenethiol) were evident. The magnetic properties of these nanoparticles combined with SERS provide a wide range of applications.  相似文献   

6.
We investigate cyclic self-dual codes over \mathbbF2r{\mathbb{F}_{2^{r}}} . We give a decomposition of a repeated-root cyclic codes over \mathbbFpr{\mathbb{F}_{p^{r}}} . The decomposition is used to analyze cyclic self-dual codes over \mathbbF2r{\mathbb{F}_{2^{r}}} . We obtain a necessary and sufficient condition for the existence of nontrivial cyclic self-dual codes over \mathbbF2r{\mathbb{F}_{2^{r}}} , and prove that all cyclic self-dual codes over \mathbbF2r{\mathbb{F}_{2^{r}}} are Type I. Finally we classify cyclic self-dual codes of some lengths over \mathbbF4{\mathbb{F}_{4}} , \mathbbF8{\mathbb{F}_{8}} , and \mathbbF16{\mathbb{F}_{16}} .  相似文献   

7.
The temperature dependence of the critical resolved shear stress (CRSS), τ, of ultra-pure tantalum single crystals (RRR ≥ 14000) observed below 250 K for a range of shear-strain rates [(g)\dot] = 2×10 - 5 - 6×10 - 3  \texts - 1 \dot{\gamma } = 2\times 10^{ - 5} - 6\times 10^{ - 3} \,{\text{s}}^{ - 1} was analyzed within the framework of a kink-pair nucleation model of flow stress. The CRSS/strain-rate data follow the model formulation t 1/ 2 = C + D  ln[(g)\dot] \tau^{ 1/ 2} = C + D\,{ \ln }\dot{\gamma } , where C and D are positive constants, for each deformation temperature T in the range 78–250 K. Evaluation of the various slip-parameters of flow stress points to (211)[[`1]11] [\bar{1}11] slip system responsible for the yielding of ultra-pure tantalum single crystals in the so-called stress/temperature regime III (T < 250 K). The value of the pre-exponential factor [(g)\dot]\texto \dot{\gamma }_{\text{o}} in the Arrhenius-type equation for the shear-strain rate [(g)\dot] \dot{\gamma } is found to be of the order of 105 s−1, which is substantially lower than that ( [(g)\dot]\texto ~ 107  \texts - 1 ) \left( {\dot{\gamma }_{\text{o}} \sim 10^{7} \,{\text{s}}^{ - 1} } \right) determined in the stress/temperature regime II (250–400 K) and contradicts the assumption invariably made in most of the theoretical models of flow stress that [(g)\dot]\texto \dot{\gamma }_{\text{o}} is a constant over a wide temperature range.  相似文献   

8.
Extended X-ray absorption fine structure (EXAFS) measurements on PbMoO4_{\boldsymbol{4}} (LMO) crystals have been performed at the recently-commissioned dispersive EXAFS beamline (BL-8) of INDUS-2 Synchrotron facility at Indore, India. The LMO samples were prepared under three different conditions viz. (i) grown from a stoichiometric starting charge in air ambient, (ii) grown from a stoichiometric starting charge in argon ambient and (iii) grown from PbO-rich starting charge in air ambient. The EXAFS data obtained at both Pb L3{\boldsymbol{L}}_{\boldsymbol{3}} and Mo K edges of LMO have been analysed to determine Pb–O, Pb–Mo and Mo–O bond lengths in the crystals. The information thus obtained has been used to examine the microscopic defect structures in crystals grown under different conditions.  相似文献   

9.
In secret sharing schemes a secret is distributed among a set of users ${\mathcal{P}}In secret sharing schemes a secret is distributed among a set of users P{\mathcal{P}} in such a way that only some sets, the authorized sets, can recover it. The family Γ of authorized sets is called the access structure. To design new cryptographic protocols, we introduce in this work the concept of extension of an access structure: given a monotone family G ì 2P{{\it \Gamma} \subset 2^\mathcal{P}} and a larger set P = P è[(P)\tilde]{\mathcal{P}^{\prime} = \mathcal{P} \cup \tilde{\mathcal{P}}}, a monotone access structure G ì 2P{{\it \Gamma}^{\prime}\subset 2^{\mathcal{P}^{\prime}}} is an extension of Γ if the following two conditions are satisfied: (1) The set P{\mathcal{P}} is a minimal subset of Γ′, i.e. P ? G{\mathcal{P} \in {\it \Gamma}^{\prime}} and P - {Ri} ? G{\mathcal{P} - \{R_i\}\notin {\it \Gamma}^{\prime}} for every Ri ? P{R_i \in \mathcal{P}}, (2) A subset A ì P{A \subset \mathcal{P}} is in Γ if and only if the subset A è[(P)\tilde]{A \cup \tilde{\mathcal{P}}} is in Γ′. As our first contribution, we give an explicit construction of an extension Γ′ of a vector space access structure Γ, and we prove that Γ′ is also a vector space access structure. Although the definition may seem a bit artificial at first, it is well motivated from a cryptographic point of view. Indeed, our second contribution is to show that the concept of extension of an access structure can be used to design encryption schemes with access structures that are chosen ad-hoc at the time of encryption. Specifically, we design and analyze a dynamic distributed encryption scheme and a ciphertext-policy attribute-based encryption scheme. In some cases, the new schemes enjoy better properties than existing ones.  相似文献   

10.
Single crystals of strontium oxalate have been grown by using strontium chloride and oxalic acid in agar–agar gel media at ambient temperature. Different methods for growing crystals were adopted. The optimum conditions were employed in each method by varying concentration of gel and reactants, and gel setting time etc. Transparent prismatic bi-pyramidal platy-shaped and spherulite crystals were obtained in various methods. The grown crystals were characterized with the help of FT–IR studies and monoclinic system of crystals were supported with lattice parameters a = 9·67628 ?, b = 6·7175 ?, c = 8·6812 ?, b\boldsymbol{\beta} = 113·566°^{\boldsymbol\circ}, and V = 521·84 ?3 calculated from X-ray diffractogram.  相似文献   

11.
Fe?CNi films were electrodeposited on ITO glass substrates from the electrolytes with different molar ratio of Ni $^{\boldsymbol{2+}}$ /Fe $^{\boldsymbol{2+}}$ and different pH values (2 $\boldsymbol{\cdot}$ 1, 2 $\boldsymbol{\cdot}$ 9, 3 $\boldsymbol{\cdot}$ 7 and 4 $\boldsymbol{\cdot}$ 3) at 25 $\boldsymbol{^\circ}$ C. The properties of Fe?CNi alloy films depend on both Ni $^{\boldsymbol{2+}}$ and Fe $^{\boldsymbol{2+}}$ concentrations in electrolyte and pH values. The content of Ni increases from 38% to 84% as the mole ratio of NiSO $_{\boldsymbol{4}}$ /FeSO $_{\boldsymbol{4}}$ increasing from 0 $\boldsymbol{\cdot}$ 50/0 $\boldsymbol{\cdot}$ 50 to 0 $\boldsymbol{\cdot}$ 90/0 $\boldsymbol{\cdot}$ 10 in electrolyte and slightly decreases from 65% to 42% as the pH values increase from 2 $\boldsymbol{\cdot}$ 1 to 4 $\boldsymbol{\cdot}$ 3. The X-ray diffraction analysis reveals that the structures of the films strongly depend on the Ni content in the binary films. The magnetic performance of the films shows that the saturation magnetization ( $\boldsymbol{M}_{\boldsymbol{\rm s}})$ decreases from 1775 $\boldsymbol{\cdot}$ 01 emu/cm $^{\boldsymbol{3}}$ to 1501 $\boldsymbol{\cdot}$ 46 emu/cm $^{\boldsymbol{3}}$ with the pH value increasing from 2 $\boldsymbol{\cdot}$ 1 to 4 $\boldsymbol{\cdot}$ 3 and the saturation magnetization ( $\boldsymbol{M}_{\boldsymbol{\rm s}})$ and coercivity ( $\boldsymbol{H}_{\boldsymbol{\rm c}})$ move up from 1150 $\boldsymbol{\cdot}$ 44 emu/cm $^{\boldsymbol{3}}$ and 58 $\boldsymbol{\cdot}$ 86 Oe to 2498 $\boldsymbol{\cdot}$ 88 emu/cm $^{\boldsymbol{3}}$ and 93 $\boldsymbol{\cdot}$ 12 Oe with the increase of Ni $^{\boldsymbol{2+}}$ concentration in the electrolyte, respectively.  相似文献   

12.
The structure of a number of unidirectionally solidified Al-Al2Au alloys of eutectic and off-eutectic compositions has been investigated over a wide range of growth rates (1.6×10–4 to 1.66×10–2cm sec–1) using a thermal gradient of approximately 80 to 100 lamellar interface || (001)Al 2 Au || (01 1) Al [ 1 1 0 ]Al 2 Au || [ 1 0 0 ] Al growth direction of lamellae and rods || [ 1 1 0 ]Al2 Au || [ 1 0 0 ]Al \begin{gathered} lamellar interface \left\| {(001)_{Al_{ 2} Au} } \right.\left\| {(01 1)} \right._{Al} \hfill \\ \left[ {1 1 0} \right]_{Al_{ 2} Au} \left\| {\left[ {1 0 0} \right]} \right._{Al} \hfill \\ growth direction of \hfill \\ lamellae and rods \left\| {\left[ {1 1 0} \right]_{Al_2 Au} \left\| {\left[ {1 0 0} \right]_{Al} } \right.} \right. \hfill \\ \end{gathered}  相似文献   

13.
Phase relations in the system Cu-La-O at 1200 K have been determined by equilibrating samples of different average composition at 1200 K, and phase analysis of quenched samples using optical microscopy, XRD, SEM and EDX. The equilibration experiments were conducted in evacuated ampoules, and under flowing inert gas and pure oxygen. There is only one stable binary oxide La2O3 along the binary La-O, and two oxides Cu2O and CuO along the binary Cu-O. The Cu-La alloys were found to be in equilibrium with La2O3. Two ternary oxides CuLaO2 and CuLa2O4+ were found to be stable. The value of varies from close to zero at the dissociation partial pressure of oxygen to 0.12 at 0.1 MPa. The ternary oxide CuLaO2, with copper in monovalent state, coexisted with Cu, Cu2O, La2O3, and/or CuLa2O4+ in different phase fields. The compound CuLa2O4+, with copper in divalent state, equilibrated with Cu2O, CuO, CuLaO2, La2O3, and/or O2 gas under different conditions at 1200 K. Thermodynamic properties of the ternary oxides were determined using three solid-state cells based on yttria-stabilized zirconia as the electrolyte in the temperature range from 875 K to 1250 K. The cells essentially measure the oxygen chemical potential in the three-phase fields, Cu + La2O3 + CuLaO2, Cu2O + CuLaO2 + CuLa2O4 and La2O3 + CuLaO2 + CuLa2O4. Although measurements on two cells were sufficient for deriving thermodynamic properties of the two ternary oxides, the third cell was used for independent verification of the derived data. The Gibbs energy of formation of the ternary oxides from their component binary oxides can be represented as a function of temperature by the equations:
  相似文献   

14.
Solid-state reaction synthesised K2Ti6O13 lead-free ceramic was characterized using XRD, SEM, and X-band EPR, at room temperature. EPR-spectra showed the presence of ( \textFe\textTi - V\textO ·· ) \left( {{\text{Fe}}_{\text{Ti}}^{\prime } - V_{\text{O}}^{ \bullet \bullet } } \right) defect associate dipoles, in orthorhombic phase, responsible for the broadening of the dielectric anomaly identified in the ε r (T) plots at T C  ~ 300 °C. This anomaly resembled a ferroelectric–paraelectric type phase transition following Curie–Weiss type trend. Besides, dielectric loss mechanism jointly represented electrical conduction, dipole orientation, and space charge polarization.  相似文献   

15.
The rheological behaviour of a 58 vol.% dispersion of styrene/acrylate particles in ethylene glycol was investigated using a plate-on-plate rheometer. Experimental results showed that the concentrated polymer dispersion exhibited a strong shear-thickening transition under both steady shear and dynamic oscillatory conditions. The low-frequency dynamic oscillatory behaviour could be reasonably interpreted in terms of the steady shear behaviour. Accordingly, the critical dynamic shear rate [(g)\dot]\textc_d , \dot{\gamma }_{{{\text{c\_d}}}} , agreed well with the critical shear rate obtained in steady flow [(g)\dot]\textc_s , \dot{\gamma }_{{{\text{c\_s}}}} , where [(g)\dot]\textc_d \dot{\gamma }_{{{\text{c\_d}}}} was calculated as the maximum shear rate by the critical dynamic shear strain γ c and the frequency ω, i.e. [(g)\dot]\textc_d = wg\textc . \dot{\gamma }_{{{\text{c\_d}}}} = \omega \gamma_{\text{c}} . However, during high-frequency dynamic oscillation, it was observed that the shear thickening occurred only when an apparent critical shear strain was reached, which could not be fully explained by the wall-slipping effect. Based on freeze fracture microscopic observations, the effect of the micro-sized flocculation of particles on the rheology of concentrated dispersions was also discussed.  相似文献   

16.
The NiO/YSZ interface prepared by depositing NiO on a single crystal YSZ (111) substrate has been investigated by transmission electron microscopy. As deposited, a very thin nickel layer ascribing to the nonstoichiometry at the very beginning growth of NiO and an amorphous silica phase resulting from silicon segregation were present at the interface. The orientational relationship of NiO (1[`1] 1) (1\overline{1} 1) //Ni (1[`1] 1) (1\overline{1} 1) //YSZ (1[`1] 1) (1\overline{1} 1) with NiO [110]//Ni [110]//YSZ [110] was observed. The microstructural and chemical changes at the NiO/YSZ interface after being heated in vacuum and hydrogen indicated different reduction mechanisms. In vacuum, the reaction \textNiO ? \textNi + 1/ 2 \text O 2 ( \textg ) {\text{NiO}} \to {\text{Ni}} + 1/ 2 {\text{ O}}_{ 2} \left( {\text{g}} \right) was prevailing at the interface between NiO and pre-existing Ni, which led to the thickening of nickel layer. In hydrogen, the reduction initiated on the NiO surface was dominant, following the chemical equation H2 + OO (NiO) → H2O (g) + VO .. (NiO) + 2e (Ni).  相似文献   

17.
An isothermal section of the phase diagram of the system Co-Sb-O at 873 K was established by isothermal equilibration and XRD analyses of quenched samples. The following galvanic cells were designed to measure the Gibbs energies of formation of the three ternary oxides namely CoSb2O4, Co7Sb2O12 and CoSb2O6 present in the system.
where 15 CSZ stands for ZrO2 stabilized by 15 mol % CaO. The reversible emfs obtained could be represented by the following expressions.
The standard Gibbs energies of formation of CoSb2O4, Co7Sb2O12 and CoSb2O6 were computed from the emf expressions:
The reasonability of the above data were assessed by computing the entropy change for the solid-solid reactions leading to the formation of ternary oxides from the respective pairs of constituent binary oxides.  相似文献   

18.
We extend the one-body phase function upper bound on the superfluid fraction f s in a periodic solid (a spatially ordered supersolid) to include two-body phase correlations. The one-body current density is no longer proportional to the gradient of the one-body phase times the one-body density, but rather it becomes $\vec{j}(\vec{r}_{1})=\rho_{1}(\vec{r}_{1})\frac{\hbar}{m}\vec{\nabla }_{1}\phi_{1}(\vec{r}_{1})+\frac{1}{N}\int d\vec{r}_{2}\rho_{2}(\vec{r}_{1},\vec{r}_{2})\frac{\hbar }{m}\vec{\nabla}_{1}\phi_{2}(\vec{r}_{1},\vec{r}_{2})$ . This expression therefore depends also on two-body correlation functions. The equations that simultaneously determine the one-body and two-body phase functions require a knowledge of one-, two-, and three-body correlation functions. The approach can also be extended to disordered solids. Fluids, with two-body densities and two-body phase functions that are translationally invariant, cannot take advantage of this additional degree of freedom to lower their energy.  相似文献   

19.
The critical temperature (TC) of MgB2, one of the key factors limiting its application, is highly desired to be improved. On the basis of the meta-material structure, we prepared a smart meta-superconductor structure consisting of MgB2 micro-particles and inhomogeneous phases by an ex situ process. The effect of inhomogeneous phase on the TC of smart meta-superconductor MgB2 was investigated. Results showed that the onset temperature (\(T_{\mathrm {C}}^{\text {on}}\)) of doping samples was lower than those of pure MgB2. However, the offset temperature (\({T}_{\mathrm {C}}^{\text {off}}\)) of the sample doped with Y2O3:Eu3+ nanosheets with a thickness of 2 ~ 3 nm which is much less than the coherence length of MgB2 is 1.2 K higher than that of pure MgB2. The effect of the applied electric field on the TC of the sample was also studied. Results indicated that with the increase of current, \({T}_{\mathrm {C}}^{\text {on}}\) is slightly increased in the samples doping with different inhomogeneous phases. With increasing current, the \({T}_{\mathrm {C}}^{\text {off}}\) of the samples doped with nonluminous inhomogeneous phases was decreased. However, the \({T}_{\mathrm {C}}^{\text {off}}\) of the luminescent inhomogeneous phase doping samples increased and then decreased with increasing current.  相似文献   

20.
The formation mechanism of spinels on Al2O3 particles in the Al2O3/Al–1.0 mass% Mg2Si alloy composite material has been investigated by transmission electron microscopy (TEM) in order to determine the crystallographic orientation relationship. A thin sample of the Al2O3/Al–Mg–Si alloy composite material was obtained by the FIB method, and the orientation relationship between Al2O3 and MgAl2O4, which was formed on the surface of Al2O3 particles, was discovered by the TEM technique as follows:
At the interface between the Al2O3 and the matrix the MgAl2O4 (spinel) crystals had facets of {111} planes. Spinels were not grown as thin films, but as particles consisting of {111} planes. They grow towards both the matrix and the Al2O3 particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号