首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electroless deposition of CoPtWP magnetic thin films   总被引:1,自引:0,他引:1  
CoPtWP magnetic thin films were prepared by electroless deposition. The influence of bath pH, deposition temperature and bath composition on the deposition speed, alloy content, microstructure, and magnetic properties of CoPtWP thin films were investigated. It was found that deposition speed increased gradually with the bath pH and deposition temperature. The cobalt content in the CoPtWP thin films varied from 77 at.% to 85 at.% by controlling the bath pH. The microstructure of CoPtWP thin films was dependent on bath pH and deposition temperature: two mixed structures, face centered cubic (fcc) and hexagonal close packed (hcp), were observed at low pH values and low deposition temperature. With the increase of pH values and deposition temperature, the intensity of fcc (111) peak suppressed gradually. The surface morphology was markedly influenced by bath pH, deposition temperature and bath composition. VSM and MFM measurements revealed that perpendicular coercivity had been increased with the bath pH. Unique hard magnetic properties of CoPtWP thin films with large perpendicular magnetic anisotropy were obtained at 90 °C and bath pH 13.0.  相似文献   

2.
Hung-Yu Wang 《Thin solid films》2010,518(24):7505-7508
The electroless deposition of boron-containing Ni (EN-B) film from a supercritical carbon dioxide (sc-CO2) bath was introduced. The deposition rate in sc-CO2 bath was one order of magnitude lower than that at ambient pressure without the presence of sc-CO2. A more uniform chemical composition of the EN-B film could be obtained if it was deposited in the sc-CO2 bath. X-ray diffraction analyses revealed that the as-deposited film was amorphous in nature, despite of the deposition condition. Deposition defects such as cracks and voids could be avoided if the deposition was conducted in the sc-CO2 bath. Crystallization and boride precipitation were found after heat treatment at 400 °C for 1 h. The EN-B film deposited from the sc-CO2 bath had a higher hardness as compared with that of the normal EN-B coating. A substantial increase in hardness was obtained due to boride precipitation.  相似文献   

3.
The sensitization, activation, nucleation and growth of electroless Ni–P deposition on silicon in an acid plating bath with sodium hydrophosphite as reducing agent and sodium succinate as complexing agent were studied by transmission electron microscopy, field emission scanning electron microscopy and atomic force microscopy. The results show that a continuous polycrystalline SnCl2 film was formed on the silicon surface in the sensitization process, and small crystalline Pd particles were dispersedly produced on SnCl2 film in the activation process. In the initial deposition stage, the small Ni–P particles had already emerged on the silicon surface in a deposition time of less than 2 s. When Ni–P particles grew, their size increased but their number decreased, and they later developed into a columnar structure. The deposition rate of the electroless Ni–P deposit increased as the pH value and the temperature of the plating bath increased (from 1.36 to 29.66 μm/h). The activation energy of the electroless Ni–P deposition on silicon increased as the pH value of the plating bath decreased (from 68.8 to 79.4 kJ/mol).  相似文献   

4.
Metal-organic chemical vapour deposition (MOCVD) of various phases in PrOx system has been studied in relation with deposition temperature (450–750 °C) and oxygen partial pressure (0.027–100 Pa or 0.2–750 mTorr). Depositions were carried out by pulsed liquid injection MOCVD using Pr(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) precursor dissolved in toluene or monoglyme. By varying deposition temperature and oxygen partial pressure amorphous films or various crystalline PrOx phases (Pr2O3, Pr7O12, Pr6O11) and their mixtures can be grown. The pure crystalline Pr2O3 phase grows only in a narrow range of partial oxygen pressure and temperature, while high oxygen pressure (40–100 Pa) always leads to the most stable Pr6O11 phase. The influence of annealing under vacuum at 750 °C on film phase composition was also studied. Near 90% step coverage conformity was achieved for PrOx films on structured silicon substrates with aspect ratio 1:10. In air degradation of Pr2O3 films with transformation to Pr(OH)3 was observed in contrast to Pr6O11 films.  相似文献   

5.
The superconducting properties of magnesium diboride (MgB2) films prepared by electroless deposition on various substrates including silver, gold and silicon are reported. In this study, MgB2 films were fabricated on silver, gold, and silicon using an electroless plating technique, while controlling the redox potential to improve the deposition quality. The structure, morphology, and superconducting properties of the samples were investigated using X-ray diffraction, magnetometry, scanning electron microscopy, and Raman spectroscopy. X-ray diffraction and Raman spectroscopy confirmed that the films are polycrystalline MgB2 but also contain some impurity phases. All the MgB2 films show superconducting transitions near 39 K, the value for bulk MgB2, with the superconducting volume fraction ranging from approximately 1 to 2%. We find a strong dependence of film quality with the oxidation potential of the bath.  相似文献   

6.
Transparent p-type conductive Ni0.9Cu0.1O thin films were prepared by pulsed plasma deposition (PPD) method. The effects of substrate temperature and oxygen pressure on the structural, electrical and optical properties of the films were investigated respectively. The film deposited at room temperature exhibits the highest conductivity of 5.17 S cm−1, with an average transmittance of 60% in the visible region. A transparent p-Ni0.9Cu0.1O/n-In2O3:W (IWO) hetero-junction diode was fabricated exhibiting rectifying current-voltage characteristics.  相似文献   

7.
Jing-Yu Chen 《Thin solid films》2010,518(24):7245-7248
A metallic Ru film was prepared by an electroless deposition method, followed by hydrogen reduction treatment. The electroless deposition formulation produced a solid film on a Cu-coated Si substrate at 40 °C preactivated by PdCl2 solution. Chemicals including K2RuCl5·xH2O, NaNO2, NaOH, and NaClO were mixed in a proper ratio that enabled heterogeneous nucleation and film growth. Results from X-ray photoelectron spectroscopy (XPS) on the as-deposited films confirmed the presence of RuOx and Ru, while X-ray diffraction (XRD) pattern suggested an amorphous nature. Planar images from a scanning electron microscope revealed a rather smooth surface at thickness less than 250 nm. Above that formation of surface crack and partial detachment from the substrate were observed. After hydrogen reduction at 200 °C for 2 h, we obtained a metallic Ru film, as confirmed by XPS and XRD. In addition, the surface roughness was increased due to the formation of pinholes that was caused by the volume contraction associated with RuOx reduction to Ru.  相似文献   

8.
Thin Bi layers were deposited by simple immersion of silicon chip into diluted HF aqueous solution, containing bismuth(III) ions. Bi nanoparticles or continuous up to 300 nm thick Bi film can be grown on silicon by the variation of the temperature and deposition time. Prepared surfaces have been characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering, photoluminescence and resistivity measurement methods. It was found that thinner Bi layers have a yellowish colour.  相似文献   

9.
Nitrogen-doped titanium dioxide (TiO2) thin films were grown on (001) SiO2 substrates by reactive pulsed laser deposition. A KrF* excimer laser source (λ = 248 nm, τFWHM ≅ 10 ns, ν = 10 Hz) was used for the irradiations of pressed powder targets composed by both anatase and rutile phase TiO2. The experiments were performed in a controlled reactive atmosphere consisting of oxygen or mixtures of oxygen and nitrogen gases. The obtained thin film crystal structure was investigated by X-ray diffraction, while their chemical composition as well as chemical bonding states between the elements were studied by X-ray photoelectron spectroscopy. An interrelation was found between nitrogen concentration, crystalline structure, bonding states between the elements, and the formation of titanium oxinitride compounds. Moreover, as a result of the nitrogen incorporation in the films a continuous red-shift of the optical absorption edge accompanied by absorption in the visible spectral range between 400 and 500 nm wavelength was observed.  相似文献   

10.
Tapas Chaudhuri 《Thin solid films》2007,515(17):6971-6974
Cerium oxide thin films are deposited on glass by pulsed laser deposition at room temperature and characterized by X-ray diffraction and atomic force microscopy. The effects of ambient gas, rate of deposition and fluence on growth of films have been studied. The films grown in forming gas and with a high rate of deposition are polycrystalline and show preferential orientation along <011> direction with a roughness of ∼ 2 nm. Films prepared in oxygen have low crystallinity.  相似文献   

11.
The technology of Hot Wire Chemical Vapor Deposition (HWCVD) or Catalytic Chemical Vapor Deposition (Cat-CVD) has made great progress during the last couple of years. This review discusses examples of significant progress. Specifically, silicon nitride deposition by HWCVD (HW-SiNx) is highlighted, as well as thin film silicon single junction and multijunction junction solar cells. The application of HW-SiNx at a deposition rate of 3 nm/s to polycrystalline Si wafer solar cells has led to cells with 15.7% efficiency and preliminary tests of our transparent and dense material obtained at record high deposition rates of 7.3 nm/s yielded 14.9% efficiency. We also present recent progress on Hot-Wire deposited thin film solar cells. The cell efficiency reached for (nanocrystalline) nc-Si:H n-i-p solar cells on textured Ag/ZnO presently is 8.6%. Such cells, used in triple junction cells together with Hot-Wire deposited proto-Si:H and plasma-deposited SiGe:H, have reached 10.9% efficiency. Further, in our research on utilizing the HWCVD technology for roll-to-roll production of flexible thin film solar cells we recently achieved experimental laboratory scale tandem modules with HWCVD active layers with initial efficiencies of 7.4% at an aperture area of 25 cm2.  相似文献   

12.
A two-step growth method was proposed to reduce the amorphous incubation layer in the initial growth of polycrystalline silicon (poly-Si) films prepared by hot-wire chemical vapor deposition (HWCVD). In the two-step growth process, a thin seed layer was first grown on the glass substrate under high hydrogen dilution ratios (φ ≥ 0.9), and then a thick overlayer was subsequently deposited upon the seed layer at a lower φ value. The effect of various deposition parameters on the structural properties of poly-Si films was investigated by Raman spectroscopy and transmission electron microscopy. Moreover, the electrical properties, such as dark and photo conductivities, of poly-Si films were also measured. It was found that the Si incubation layer could be suppressed greatly in the initial growth of poly-Si with the two-step growth method. In the subsequent poly-Si film thickening, a lower φ value of the reactant gases can be applied to enhance the deposition rate. Therefore, a high-quality poly-Si film can be fabricated via a two-step growth method with a sufficient growth rate using HWCVD.  相似文献   

13.
Sen-lin Wang 《Thin solid films》2007,515(23):8419-8423
The Ni-Co-B alloy was electrolessly deposited from the bath using potassium borohydride as a reducing agent and ethylenediamine as a stabilizer. The effects of the plating conditions on the plating rate and the composition of the deposit were studied to improve the stability of the plating bath and to control the composition of the Ni-Co-B deposit. The crystallization behavior of the deposit was investigated by X-ray diffraction. The results show that the structure of the as-plated deposit is amorphous, and the deposit was crystallized into cubic Ni3B and Ni-Co phases at 350 °C. The effect of heat treatment on the magnetic performances of the deposit was studied by vibrating sample magnetometer. The saturation magnetization and the residual magnetization of the coating go up with the increase of heat treatment temperature from 50 °C to 600 °C. The deposit heat-treated at 600 °C is found to be suitable as soft magnetic materials.  相似文献   

14.
Catalytic chemical vapor deposition (Cat-CVD) has been demonstrated as a promising way to prepare device-quality silicon films. However, catalyst ageing due to Si contamination is an urgency to be solved for the practical application of the technique. In this study, the effect of carbonization of tantalum catalyst on its structure and performance was investigated. The carbonized Ta catalyst has a TaC surface layer which is preserved over the temperature range between 1450 and 1750 °C and no Si contamination occurs on the catalyst after long-term use. Si film prepared using the carbonized Ta catalyst has a similar crystal structure to that prepared by uncarbonized Ta catalyst. Formation of the TaC surface layer can alleviate the ageing problem of the catalyst, which shows great potential as a stable catalyst for Cat-CVD of Si films.  相似文献   

15.
Xi Zhang  Zhong Chen 《Thin solid films》2007,515(11):4696-4701
Immersion deposition of Ni on p-Si (100) blank substrates was carried out in an aqueous NiSO4 solution at a pH value of 8 through displacement reactions. Study of the early deposition stage revealed that incorporation of 2.5 M NH4F in solution promoted Ni nucleation significantly. By adding fluoride, it was observed that metallic Ni was deposited constantly at the expense of Si and the deposition was not self-limited. Sponge-like Ni deposits were observed and it might explain the non-limiting feature of such immersion Ni deposition over Si. Transmission electron microscopic images of Ni/Si cross-sections showed that during the reactions, Si oxide played a role of the intermediate phase. The whole process could have involved successive Si oxidation steps. Eventually the oxide was etched away by fluoride resulting in a nanoporous Ni film.  相似文献   

16.
The interest about zirconium oxynitrides is growing with the attention for zirconium nitrides phase at high zirconium content. In recent years a great progress has been made to realize both the higher nitride phase (Zr3N4) and the higher oxynitride phase (Zr2ON2) in more ordered crystal structures. In this work the abovementioned two phases are realized by RF magnetron sputtering technique. The characterization results, illustrated in the present paper, push towards the evidence of an evolution from zirconium N-rich nitride to the oxynitride films by introducing a very small percentage (0.5%) of water vapor in a sputtering atmosphere made only of nitrogen gas. In particular, structural analysis identified zirconium N-rich nitride as c-Zr3N4 and zirconium oxynitride as c-Zr2ON2. The formation of zirconium oxynitride is due to oxygen presence, coming from the water dissociation in the plasma. Both phases request an additional energy supplied by substrate bias assistance for c-Zr3N4 and by more energetic particles reflected by the Zr target for c-Zr2ON2.  相似文献   

17.
X-ray diffraction based strain measurements have been carried out during the deposition and subsequent relaxation of electroless (autocatalytic) polycrystalline copper films. Thin polymer substrates were mounted on the surface of an electrolyte-filled plating cell, and the X-rays traversed the substrate to scatter of the growing Cu layer. The plating cell was rotated back and forth by up to 70° in order to find the strain of Cu crystallites within and perpendicular to the plane of the film (sin2ψ method). Three types of plating solutions were investigated. A Ni-free solution C leads to compressive strain during steady-state film growth, followed by an exponential relaxation of the film to a residual tensile strain. Electrolytes A and B contain Ni ions, and the resulting Cu(Ni) films have nearly constant strain with small counteracting strain variations during and after film growth. Cyanide-stabilized solution A yields films with a slight compressive strain, while solution B, stabilized by an aromatic nitrogen compound, yields films with tensile strain. Different and reproducible evolution patterns observed for these three electrolyte types establishes in situ X-ray diffraction strain monitoring as a method to evaluate chemical formulations for electroless deposition.  相似文献   

18.
F. Liu  M. Zhu  J. Liu  L. Wang 《Thin solid films》2003,430(1-2):182-185
A combination of hot-wire chemical vapor deposition (HWCVD) and RF plasma, referred to as plasma-assisted HWCVD (P-HWCVD) was used to prepare poly-crystalline silicon (poly-Si) thin films. The effects of the plasma on the film properties were studied by varying the RF power (Pw) from 0 to 40 W. The results indicate that, compared with that of HWCVD samples, the film crystalline fraction (Xc) is enhanced at low Pw assistance, whereas it decreases at higher Pw. The uniformity of the film thickness is considerably improved by introducing plasma. It is also found that the porosity of the film, indirectly detected from infrared spectra, is much reduced. Auger analysis of the tantalum filament used in the P-HWCVD process shows much lower silicon contamination than that in HWCVD.  相似文献   

19.
Zinc sulfide (ZnS) semiconductor nanocrystal films have been prepared on indium tin oxide coated glass substrates by sulfosalicylic acid (C7H6O6S)-assisted galvanostatic deposition with subsequent annealing. The deposition was performed at 10 mA cm− 2 in acidic electrolytes containing 15-30 mM Zn(CH3COO)2, 20 mM Na2S2O3, 200 mM LiCl, 0.375 mM Na2SO3, and 0 or 0.2 mM C7H6O6S. Results show that the presence of C7H6O6S can suppress the precipitation of Zn and S impurity phases during the ZnS deposition process. As the [C7H6O6S] = 0.2 mM and [Zn2 +] = 20 mM, the deposited ZnS film exhibits only hexagonal structure with an ideal Zn/S atomic ratio of 1.03 and a close-packed granular morphology. But its band gap about 2.86 eV is narrower than the common value of ZnS, probably due to the existence of some spurious acetate species and defect states. By annealing the film at 400 °C for 60 min, its band gap increased up to 3.70 eV, despite that its crystalline phase transformed into cubic structure which usually shows the narrower band gap than hexagonal ZnS. The significant band gap widening could be ascribed to the degradation of spurious acetate species and the reduction of various possible defect states in the annealing process.  相似文献   

20.
Zinc nitride films were deposited on glass or silicon substrates by reactive magnetron radio frequency sputtering of zinc in either N2-Ar or N2-Ar-O2 ambient. The effects of varying the nitrogen contents and the substrate temperature were investigated. X-ray diffraction data showed that the as-deposited films contain the zinc nitride cubic crystalline phase with a preferred orientation, and Raman scattering measurements revealed ZnN related modes. According to energy-dispersive X-ray spectroscopy analysis, the as-deposited films were nitrogen-rich and contained only a small fraction of oxygen. Hall-effect measurements showed that p-type zinc nitride with carrier concentration of ~ 1019 cm−3, mobility of ~ 101 cm2/Vs, resistivity of ~ 10−2 Ω ∗ cm, was obtained. The photon energy dependence of optical transmittance suggested that the material has an indirect bandgap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号