首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mode I near-tip stress fields for elastic perfectly plastic pressure-sensitive materials under plane strain and small-scale yielding conditions are presented. A Coulomb-type yield criterion described by a linear combination of the effective stress and the hydrostatic stress is adopted in the analysis. The finite element computational results sampled at the distance of a few crack opening displacements from the tip show that, as the pressure sensitivity increases, the magnitudes of the normalized radial and hoop stress ahead of the tip decrease, the total angular span of the singular plastic sectors decreases, and the angular span of the elastic sectors bordering the crack surfaces increases. When non-singular T stresses are considered along the boundary layer of the small-scale yielding model, the near-tip stresses decrease as the T stress decreases. The plastic zone shifts toward the crack surfaces as the T stress increases. When the discontinuities of the radial stress and the out-of-plane normal stress along the border between the plastic sector and the elastic sector are allowed, the angular variations of the asymptotic crack-tip fields agree well with those of the finite element computations. Variation of the Q stresses for pressure-sensitive materials can be found from the asymptotic solutions when the plastic zone size ahead of the tip is relatively larger than the crack opening displacement. In addition the T stress is shown to have strong effects on the plastic zone sizes and shapes which could affect the toughening of pressure-sensitive materials.  相似文献   

2.
Quasi-statically growing crack-tip fields in elastic perfectly plastic pressure-sensitive materials under plane strain conditions are investigated in this paper. The materials are assumed to follow the Drucker-Prager yield criterion and the normality flow rule. The asymptotic mode I crack-tip fields are assumed to follow the five-sector assembly of Drugan et al. (1982) for Mises materials. The crack-tip sectors, in turns, from the front of the crack tip are a constant stress sector, a centered fan sector, a non-singular plastic sector, an elastic sector and finally a trailing non-singular plastic sector bordering the crack face. The results of the asymptotic analysis show that as the pressure sensitivity increases, the plastic deformation shifts to the front of the tip, the angular span of the elastic unloading sector increases, and the angular span of the trailing non-singular plastic sector bordering the crack surface decreases. As the pressure sensitivity increases to about 0.6, the angular span of the trailing non-singular plastic sector almost vanishes. The effects of the border conditions between the centered fan sector and the first non-singular plastic sector on the solutions of the crack-tip fields for both Mises and pressure-sensitive materials are investigated in details. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
P.-F. Luo  C.-H. Wang 《Strain》2008,44(3):223-230
Abstract:  Stereo vision was used to measure the crack-tip parameters, such as J integral, plastic mixity and elastic mixity of mixed-mode fracture specimens, and to study the applicability of the Shih's plane strain solution to the mixed-mode crack-tip fields. The fracture specimen used in this study was a compact tension shear (CTS) specimen made of 2024-O aluminum. The in-plane strain and stress fields near the mixed-mode crack tip of the CTS specimen were determined using the deformation field measured by the stereo vision. It is observed that the J integral values computed along rectangular contours surrounding the mixed-mode crack-tip approach constant values after r / h  > 0.5. The in-plane strains determined experimentally at several points near the crack tip and at several radial lines emerging from the crack tip are compared with the values calculated using Shih's plane-strain solution and the HRR slope, named after the investigations of Hutchinson, Rice and Rosengren respectively. It is found that the measured values follow the trends of the Shih's plane-strain solution. The elastic mixity evaluated using the measured crack-tip stress fields is close to that obtained from analytical solution. However, the evaluated plastic mixity deviates from the analytical solution.  相似文献   

4.
In order to evaluate the mechanical behavior around small-scale yielding crack tip for both plane strain and plane stress, the asymptotic governing equations and their boundary conditions by considering fracture mechanisms are formulated. A total deformation theory of plasticity with a power-law hardening is used. The analysis of the near-tip fields is carried out for both the maximum tensile and shear stress crack growth direction criteria, as well as for the complete range of mixity parameters and various strain-hardening levels. The new scheme of mixed-mode problem solution is proposed. Realationships between elastic and plastic mixity parameters are given as functions of the crack growth direction criterion and the strain-hardening exponent.Translated from Problemy Prochnosti, No. 1, pp. 60–75, January–February, 2005  相似文献   

5.
In this paper, we investigate the effects of the non-singular stress (T stress) on the mode I near-tip fields for elastic perfectly plastic pressure-sensitive materials under plane-stress and small-scale yielding conditions. The T stress is the normal stress parallel to the crack faces. The yield criterion for pressure-sensitive materials is described by a linear combination of the effective stress and the hydrostatic stress. Plastic dilatancy is introduced by the normality flow rule. The results of our finite element computations based on a two-parameter boundary layer formulation show that the total angular span of the plastic sectors of the near-tip fields increases with increasing T stress for materials with moderately large pressure sensitivity. The T stress also has significant effects on the sizes and shapes of the plastic zones. The height of the plastic zone increases substantially as the T stress increases, especially for materials with large pressure sensitivity. When the plastic strains are considered to be finite as for transformation toughened ceramics, the results of our finite element computations indicate that the phase transformation zones for strong transformation ceramics with large pressure sensitivity can be approximated by those for elastic-plastic materials with no limit on plastic strains. When the T stress and the stress intensity factor K are prescribed in the two-parameter boundary layer formulation to simulate the crack-tip constraint condition for a single-edge notch bend specimen of zirconia ceramics, our finite element computation shows a spear shape of the phase transformation zone which agrees well with the corresponding experimental observation.  相似文献   

6.
Plane stress mode I crack-tip fields for perfectly plastic orthotropic materials are studied. Plastic orthotropy is described by Hill's quadratic yield function. The construction of crack-tip fields is based on the general crack-tip field analysis for elastic perfectly plastic materials given by Rice [1] and guided by the corresponding low-hardening power-law solutions. Two very different types of plane-stress crack-tip fields emerge as plastic orthotropy is varied. The first one consists of a centered fan sector in front of the crack tip and two neighboring constant stress sectors. The second one consists of a constant stress sector in front of the crack tip, a constant stress sector bordering the crack face, and a centered fan sector between the two constant stress sectors. All the perfectly plastic crack-tip solutons are verified by the corresponding low-hardening power-law solutions. General trends of crack-tip stress solutions as functions of plastic orthotropy and implications of these solutions to the design of ductile composite materials are discussed.
Résumé On étudie les champs de contraintes planes de mode I à l'extrémité d'une fissure, dans les matériaux orthotropiques parfaitement plastique. L'orthotropie plastique est décrite par la fonction quadratique de plasticité de Hill. On base les constructions des champs de constraintes sur l'analyse générale des constraintes à l'extrémité d'une fissure fournie par Rice pour les matériaux élastiques parfaitement plastiques, que l'on règle par les lois paraboliques caractérisant un faible écrouissage. Lorsque l'on modifie l'orthotropie plastique, il apparaît deux types de champs de contraintes à l'extrémité de la fissure très différents. Le premier comporte un secteur en éventail centré sur le front de fissure, et deux secteurs voisins à contraintes constantes. Le second consiste en une secteur à contrainte au bord de la surface de la fissure, et un secteur en éventail centré sur les deux secteurs à contraintes constantes. Toutes les solutions relatives à une extrémité de fissures parfaitement plastique sont vérifiées par les fonctions paraboliques d'écrouissage faible correspondantes. On discute des tendances générales que suivent les solutions pour les contraintes en extrémité de fissure selon l'orthrotropie plastique, et des implications que comportent ces solutions dans la conception de matériaux composites ductiles.
  相似文献   

7.
In this paper, analytical solutions for asymptotic crack-tip plastic sectors in perfectly plastic Mises materials are derived under mixed in-plane and out-of-plane shear loading conditions. Plastic strains in crack-tip plastic sectors are considered to be singular and non-singular. Sectors with singular plastic strains have the solution of centered fan type, and sectors with non-singular plastic strains have the solution of either centered fan or constant stress type. The requirement of stress continuity along the border between a constant stress and a centered fan sectors is then discussed. Discontinuities of the normal and out-of-plane shear stresses in the radial direction between two constant stress sectors are assumed in assembling the crack-tip fields under mixed mode II/III and I/III conditions. Crack-tip fields under mixed mode II/III and I/III conditions with small contributions of mode III are then presented to show the existence of asymptotic crack-tip fields for perfectly plastic materials under mixed in-plane and out-of-plane shear loading conditions. The trends of the angular variations of the mode III stresses under the mixed mode II/III and I/III conditions are generally in agreement with those of the available asymptotic and finite element analyses for low strain hardening materials.  相似文献   

8.
Plane stress dynamic crack growth along a ductile/rigid interface is investigated. The ductile material is taken to be ideally plastic and obey the J2 flow theory of plasticity. Under steady-state conditions, the asymptotic structure of the crack-tip stress, velocity and strain fields has been obtained. The study reveals that two types of crack-tip sectors exist, namely uniform and nonuniform plastic sectors and that the stress, strain and velocity fields are bounded (nonsingular) in all sectors. In a uniform sector, the rectangular Cartesian components of the stress, strain and velocity fields are constant, and there is no plastic strain accumulation. In a nonuniform sector, the stress, strain and velocity components at a point depend on the angular position of the point in the crack-tip polar coordinate system and are governed by a system of simultaneous ordinary differential equations. This is a sector plastic strains can accumulate. A general crack-tip sector assembly is obtained for a practical range of crack growth speeds. Several nontrivial families of admissible solutions of the crack-tip fields based on this general assembly of uniform and nonuniform crack-tip sectors are presented and discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Summary The problem of the small-scale yielding (SSY) plane-strain asymptotic fields for the interfacial free-edge joint singularity is examined in detail, and comparisons are made with the interfacial crack tip. The geometries are idealized as isotropic elasto-plastic materials with Ramberg-Osgood power-law hardening properties bonded to a rigid elastic substrate. The resulting fields are shown to be singular and are presented in terms of radial and angular distributions of stress and displacement, and as idealized plastic slip-line sectors. A fourth-order Runge-Kutta numerical method provides solutions to fundamental equations of equilibrium and compatibility that are verified with those of a highly focused finite element (FE) analysis. It is shown that, as in the case of the crack, the asymptotic singular fields are only dependent on the hardening parameter and only a small range of interfacial mode-mix ratios are permitted. The order for the stress singularity may be formulated in terms of the hardening parameter and the elastic solution for incompressible material. The rigid-slip-line field for the interfacial free-edge joint is presented, and it is shown that there is some significant similarity between the asymptotic fields of the deviatoric polar stresses for the joint and the crack-tip having an elastic wedge sector.  相似文献   

10.
Tensile crack tip fields in elastic-ideally plastic crystals   总被引:3,自引:0,他引:3  
Crack tip stress and deformation fields are analyzed for tensile-loaded ideally plastic crystals. The specific cases of (0 1 0) cracks growing in the [1 0 1] direction, and (1 0 1) cracks in the [0, 1, 0] direction, are considered for both fcc and bcc crystals which flow according to the critical resolved shear stress criterion. Stationary and quasistatically growing crack fields are considered. The analysis is asymptotic in character; complete elastic-plastic solutions have not been determined. The near-tip stress state is shown to be locally constant within angular sectors that are stressed to yield levels at a stationary crack tip, and to change discontinuously from sector to sector. Near tip deformations are not uniquely determined but fields involving shear displacement discontinuities at sector boundaries are required by the derived stress state. For the growing crack both stress and displacement must be fully continuous near the tip. An asymptotic solution is given that involves angular sectors at the tip that elastically unload from, and then reload to, a plastic state. The associated near-tip velocity field then has discontinuities of slip type at borders of the elastic sectors. The rays, emanating from the crack tip, on which discontinuities occur in the two types of solutions are found to lie either parallel or perpendicular to the family of slip plane traces that are stressed to yield levels by the local stresses. In the latter case the mode of concentrated shear along a ray of discontinuity is of kink type. Some consequences of this are discussed in terms of the dislocation generation and motion necessary to allow the flow predicted macroscopically.  相似文献   

11.
The aim of this study is to represent the combined effect of mode mixity, specimen geometry and relative crack length on the $T$ -stress, elastic–plastic stress fields, integration constant $I_{n}$ , angle of initial crack extension, and the plastic stress intensity factor. The analytical and numerical results are obtained for the complete range of mixed modes of loading between mode I and mode II. For comparison purposes, the reference fields for plane mixed-mode problems governing the asymptotic behavior of the stresses and strains at the crack tip are developed in a power law elastic–plastic material. For the common experimental fracture mechanics specimen geometries considered, the numerical constant of the plastic stress field $I_{n}$ and the $T$ -stress distributions are obtained as a function of the dimensionless crack length and mode mixity. A method is also suggested for calculating the plastic stress intensity factor for any mixed-mode I/II loading based on the $T$ -stress and power law solutions. It is further demonstrated that in both plane stress and the plane strain, the plastic stress intensity factor can be used to characterize the crack tip stress fields for a variety of specimen geometries and different mixed-mode loading. The applicability of the plastic stress intensity factor to analysis of the in-plane and out-of-plane constraint effect is also discussed.  相似文献   

12.
The strain distribution in the vacinity of a blunted crack-tip is analysed by slip line theory under the conditions of plane-strain, small-scale yielding, and mixed-mode loading of Modes I and II. A generalized crack-tip opening displacement is introduced by which the strain and stress fields near the blunted crack-tip are determined uniquely over a wide range of Mode I and II combinations. Also, coupled experimental and finite-element analyses under the condition of large-scale yielding reveal that the initiation of stable crack growth occurs when the generalized crack-tip opening displacement attains a critical value which is constant for the material tested. The finite-element analysis is based on the finite deformation theory of elastic-plastic materials. The generalized crack-tip opening displacement criterion is found to be superior to the J-integral and the usual COD for the characterization of the initiation of stable crack growth. The plastic work in a small circular region at the crack-tip is found to be equivalent to the generalized crack-tip opening displacement, as a fracture criterion.  相似文献   

13.
For a crack in a homogeneous material the effect of plastic anisotropy on crack-tip blunting and on the near-tip stress and strain fields is analyzed numerically. The full finite strain analyses are carried out for plane strain under small scale yielding conditions, with purely symmetric mode I loading remote from the crack-tip. In cases where the principal axes of the anisotropy are inclined to the plane of the crack it is found that the plastic zones as well as the stress and strain fields just around the blunted tip of the crack become non-symmetric. In these cases the peak strain on the blunted tip occurs off the center line of the crack, thus indicating that the crack may want to grow in a different direction. When the anisotropic axes are parallel to the crack symmetry is retained, but the plastic zones and the near-tip fields still differ from those predicted by standard isotropic plasticity.  相似文献   

14.
Mixed-mode stationary crack-tip fields are obtained for an elastic-nonlinear viscous power law creeping solid under conditions of plane strain and small-scale creep. Power law exponents of 2 and 5 are considered which are representative of the creep response of a wide range of ceramics and metals. The imposed far-field mixity ranges from pure mode I to pure mode II. Crack tip fields are calculated during the transient regime using a detailed finite element analysis and are shown to be governed by a Hutchinson-Rice-Rosengren type singularity over the inner one fifth of the creep zone. Dominance of universal mixed-mode near-tip fields within the inner creep zone is found for several mixtures of far-field mode I and mode II. The pronounced effects of the amount of mixity on the size and shape of the creep zone as well as on the time required to reach extensive creep conditions are determined. For a creep exponent of 5, it is estimated that the creep zone grows about seven times faster in mode II than in mode I, with a corresponding decrease in the transition time from small-scale to extensive creep. For a creep exponent of 2, the creep zone grows about six times faster in mode II than in mode I. Finally, the mixed-mode creep fields are used to assess possible beneficial effects of crack deflection or branching in metals and ceramics at elevated temperatures.  相似文献   

15.
The asymptotic structures of crack-tip stress and deformation fields are investigated numerically for quasi-static and dynamic crack growth in isotropic linear hardening elastic-plastic solids under mode I, plane stress, and small-scale yielding conditions. An Eulerian type finite element scheme is employed. The materials are assumed to obey the von Mises yield criterion and the associated flow rule. The ratio of the crack-tip plastic zone size to that of the element nearest to the crack tip is of the order of 1.6 × 104. The results of this study strongly suggest the existence of crack-tip stress and strain singularities of the type r s (s < 0) at r=0, where r is the distance to the crack tip, which confirms the asymptotic solutions of variable-separable type by Amazigo and Hutchinson [1] and Ponte Castañeda [2] for quasi-static crack growth, and by Achenbach, Kanninen and Popelar [3] for dynamic crack propagation. Both the values of the parameter s and the angular stress and velocity field variations from the present full-field finite element analysis agree very well with those from the analytical solutions. It is found that the dominance zone of the r s-singularity is quite large compared to the size of the crack-tip active plastic zone. The effects of hardening and inertia on the crack-tip fields as well as on the shape and size of the crack-tip active plastic zone are also studied in detail. It is discovered that as the level of hardening decreases and the crack propagation speed increases, a secondary yield zone emerges along the crack flank, and kinks in stress and velocity angular variations begin to develop. This dynamic phenomenon observable only for rapid crack growth and for low hardening materials may explain the numerical difficulties, in obtaining solutions for such cases, encountered by Achenbach et al. who, in their asymptotic analysis, neglected the existence of reverse yielding zones along the crack surfaces.  相似文献   

16.
A near-tip asymptotic analysis is given for the stress and deformation field near the tip of crack propagating dynamically under anti-plane shear in an ideally plastic single crystal. A paricular class of orientations of the crack relative to the crystals is considered so that the yield is so simple diamond shape (relative to directions along perpendicular to the crack) in the plane of the anti-plane shear stresses. The near-tip solution is shown to consists of sectors which carry constant stresses, at yield levels, corresponding to adjacent vertices on the diamond-shaped yield locus, and which are joined along an elastic-plastic shock discontinuity. All plastic flow in the near-tip region occurs in the shock. Plastic strains and particle velocity are finite at the crack tip. The plastic strain is proportional to the elastic strain at onset of yielding and is inversely proportional to the elastic Mach number associated with the speed of crack growth.  相似文献   

17.
The asymptotic mixed mode crack tip fields in elastic-plastic solids are scaled by the J-integral and parameterized by a near-tip mixity parameter, M _p . In this paper, the validity and range of dominance of these fields are investigated. To this end, small strain elastic-plastic finite element analyses of mixed mode fracture are first performed using a modified boundary layer formulation. Here, a two term expansion of the elastic crack tip field involving the stress intensity factor |K| the elastic mixity parameter M _e as well as the T-stress is prescribed as remote boundary conditions. The analyses are conducted for different values of M _e and the T-stress. Next, several commonly used mixed mode fracture specimens such as Compact Tension Shear (CTS), Four Point Bend (4PB), and modified Compact Tension specimen are considered. Here, the complete range of loading from contained yielding to large scale yielding is analyzed. Further, different crack to width ratios and strain hardening exponents are considered. The results obtained establish that the mixed mode asymptotic fields dominate over physically relevant length scales in the above geometries, except for predominantly mode I loading and under large scale yielding conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Crack growth along an interface between a solid with plastic anisotropy and an elastic substrate is modelled by representing the fracture process in terms of a traction-separation law specified on a crack plane. A phenomenological elastic-viscoplastic material model is applied, using one of two different anisotropic yield criteria to account for the plastic anisotropy. Conditions of small-scale yielding are assumed, and due to the mismatch of elastic properties across the interface the corresponding oscillating stress singularity field is applied as boundary conditions on the outer edge of the region analyzed. Crack growth resistance curves are calculated numerically, and based on these results the dependence of the steady-state fracture toughness on the near-tip mode mixity is determined. Different initial orientations of the principal axes relative to the interface are considered and it is found that the steady-state fracture toughness is quite sensitive to this orientation of the anisotropy.  相似文献   

19.
Results on the asymptotic analysis of crack tip fields in elastic-plastic single crystals are presented and some preliminary results of finite element solutions for cracked solids of this type are summarized. In the cases studied, involving plane strain tensile and anti-plane shear cracks in ideally plastic f c c and b c c crystals, analyzed within conventional small displacement gradient assumptions, the asymptotic analyses reveal striking discontinuous fields at the crack tip.For the stationary crack the stress state is found to be locally uniform in each of a family of angular sectors at the crack tip, but to jump discontinuously at sector boundaries, which are also the surfaces of shear discontinuities in the displacement field. For the quasi-statically growing crack the stress state is fully continuous from one near-tip angular sector to the next, but now some of the sectors involve elastic unloading from, and reloading to, a yielded state, and shear discontinuities of the velocity field develop at sector boundaries. In an anti-plane case studied, inclusion of inertial terms for (dynamically) growing cracks restores a discontinuous stress field at the tip which moves through the material as an elastic-plastic shock wave. For high symmetry crack orientations relative to the crystal, the discontinuity surfaces are sometimes coincident with the active crystal slip planes, but as often lie perpendicular to the family of active slip planes so that the discontinuities correspond to a kinking mode of shear.The finite element studies so far attempted, simulating the ideally plastic material model in a small displacement gradient type program, appear to be consistent with the asymptotic analyses. Small scale yielding solutions confirm the expected discontinuities, within limits of mesh resolution, of displacement for a stationary crack and of velocity for quasi-static growth. Further, the discontinuities apparently extend well into the near-tip plastic zone. A finite element formulation suitable for arbitrary deformation has been used to solve for the plane strain tension of a Taylor-hardening crystal panel containing, a center crack with an initially rounded tip. This shows effects due to lattice rotation, which distinguishes the regular versus kinking shear modes of crack tip relaxation. and holds promise for exploring the mechanics of crack opening at the tip.  相似文献   

20.
Alternate expressions for the angular variation of the K-field stresses and displacements around a sharp-crack embedded in an elastic medium subjected to an in-plane mixed-mode (mode-1 and -2) loading are presented. The expressions are derived in terms of the mode-mixity-angle instead of superposing the pure-mode fields. The alternate expressions are derived using complex potentials and the Kolosov-Muskhelishvili method. The mixed-mode stress and displacement fields are presented in the crack-tip Cartesian and polar coordinates. We have obtained the crack-growth-angle in terms of the mixity-angle assuming the maximum hoop- and principal-stress criterions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号