首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prolonged depolarization induces a slow inactivation process in some K+ channels. We have studied ionic and gating currents during long depolarizations in the mutant Shaker H4-Delta(6-46) K+ channel and in the nonconducting mutant (Shaker H4-Delta(6-46)-W434F). These channels lack the amino terminus that confers the fast (N-type) inactivation (Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1991. Neuron. 7:547-556). Channels were expressed in oocytes and currents were measured with the cut-open-oocyte and patch-clamp techniques. In both clones, the curves describing the voltage dependence of the charge movement were shifted toward more negative potentials when the holding potential was maintained at depolarized potentials. The evidences that this new voltage dependence of the charge movement in the depolarized condition is associated with the process of slow inactivation are the following: (a) the installation of both the slow inactivation of the ionic current and the inactivation of the charge in response to a sustained 1-min depolarization to 0 mV followed the same time course; and (b) the recovery from inactivation of both ionic and gating currents (induced by repolarizations to -90 mV after a 1-min inactivating pulse at 0 mV) also followed a similar time course. Although prolonged depolarizations induce inactivation of the majority of the channels, a small fraction remains non-slow inactivated. The voltage dependence of this fraction of channels remained unaltered, suggesting that their activation pathway was unmodified by prolonged depolarization. The data could be fitted to a sequential model for Shaker K+ channels (Bezanilla, F., E. Perozo, and E. Stefani. 1994. Biophys. J. 66:1011-1021), with the addition of a series of parallel nonconducting (inactivated) states that become populated during prolonged depolarization. The data suggest that prolonged depolarization modifies the conformation of the voltage sensor and that this change can be associated with the process of slow inactivation.  相似文献   

2.
1. N-type (omega-conotoxin sensitive) calcium currents (ICa) were recorded in identified neurons in Hermissenda crassicornis using low-resistance patch electrodes (0.7 +/- 0.3 M omega; n = 101) under conditions that eliminated inward Na+ currents (choline ions substitution) and suppressed outward K+ currents (Cs+, tetraethylammonium, and 4-AP). Step depolarization from a holding potential of -60 mV to potentials above -30 mV elicited ICa, which peaked approximately 20 mV and declined with increasing depolarizations. 2. Evidence for a low-threshold current was present. Step depolarization from a more hyperpolarizing potentials (e.g., -90 mV) revealed a small shoulder (< 100 pA) at -60 to -40 mV that was sensitive to Co2+ and Ni2+. However, under the conditions examined here (holding potential of -60 mV), the high-voltage-activated current predominated. 3. Barium (Ba2+) and strontium (Sr2+) permeate the Ca2+ channel with similar activation kinetics (ease of permeation; Ba2+ > Ca2+ > Sr2+). Steady-state activation of permeability versus membrane potentials for Ca2+, Ba2+, and Sr2+ as charge carriers could be fitted with the Boltzmann equation, with half-activation voltage and slope factor of 2.9 and 7.7 mV for ICa, -13.1 mV and 7.8 for Ba2+ current (IBa) and -2.3 mV and 7.8 for Sr2+ current (ISr). The time course of activation was monotonic with time constant (tau) for ICa ranging from 2 to 8 ms. 4. The inactivation profile was complex. At negative step potentials (e.g., -20 mV), inactivation of the current was slow. Depolarization steps to relatively positive voltages (e.g., 10 mV) showed more rapid inactivation than those at more positive potentials (e.g., 40 mV). When extracellular Ca2+ was raised from 5 to 10 mM, a biphasic decay (tau fast of 25 +/- 4 ms; and tau slow of 473 +/- 64 ms; mean +/- SD, n = 9) was seen. Such an observation suggested a current-mediated inactivation. 5. With a pulse duration of approximately 350 ms, ISr showed inactivation whereas Ba2+ virtually removed the decay. However, IBa turned off with more prolonged depolarization. 6. A twin-pulse protocol was used to assess the voltage dependence of inactivation: an incomplete U-shaped inactivation curve was observed for ICa, IBa, and ISr. Channels available for inactivation were increased in the presence of Ca2+ ions. 7. Inactivation was further studied with the Ca2+ chelators, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and bis(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA). With 10 mM of BAPTA, in the pipette, inactivation was reduced but not removed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Whole-cell transmembrane potassium currents were studied in somatic membrane of freshly isolated rat dorsal root ganglion neurons. We defined three types of potassium currents, which were separated on the basis of their different potential dependence of activation and sensitivity to external tetraethylammonium and 4-aminopyridine. The potential dependence of kinetic and steady-state properties of a fast inactivating potassium current, a slow inactivating potassium current and a non-inactivating delayed rectifier current were described by the Hodgkin-Huxley equations. A transient fast inactivating potassium current was activated at the most negative membrane potentials and was not reduced in the presence of 10 mM tetraethylammonium in the external solution. 4-Aminopyridine (2 mM) caused an 80% inhibition of this current. The activation of the fast inactivating potassium current was properly described by fitting a single exponent raised to the fourth power. The time constant of activation changed from 4 to 1 ms in the voltage range between -30 and +40 mV. The time constant of inactivation decreased from 35 to 15 ms over the same range of potentials. Parameters for the fit of a Boltzmann equation to mean values for steady-state activation were V1/2=-20mV, k=11.8mV, and for steady-state inactivation V1/2= -85 mV, k=-9.8 mV. A transient slow inactivating potassium current had an activation threshold between -40 and -30 mV. At 2 mM 4-aminopyridine, the depression of the slow potassium current was 55%. The extracellular application of 10 mM tetraethylammonium was less effective and evoked a 40% reduction. The activation of the slow inactivating potassium current was also described by a single exponential function raised to the fourth power. The time constant of activation decreased from 12 ms at a membrane potential of -10 mV to 4 ms at the potential of 60 mV. The inactivation of slow inactivating potassium current was described by two exponents. The time constant for the fast exponent ranged from 300 ms at -20 mV to 160 ms at +60 mV. The slower exponent was also potential dependent and its time constant ranged from approximately 2600 to 1600 ms over the same potentials. Parameters for the Boltzmann equation fittings to mean values were V1/2= -12.8 mV, k=13.4 mV and V1/2= -54.6 mV, k= -12 mV for steady-state activation and inactivation, respectively. A non-inactivating delayed rectifier potassium current was activated at the most positive membrane potentials. This non-inactivating current did not change in the presence of 4-aminopyridine. Extracellular tetraethylammonium (10 mM) caused a 70% reduction of this current. The activation of the non-inactivating potassium current was described by one exponent raised to the fourth power. The time constant for activation ranged from 85 ms at -5 mV to 30 ms at 45 mV. No time-dependent inactivation was observed during 15-s testing potentials in the voltage range between 10 and +60 mV. The activation behavior was characterized by V1/2=15.3 mV, k=12.5 mV. The densities of these potassium currents were studied for three groups of animals: one, five to six and 14-15 days of postnatal development. Fifty cells were examined in each age group. All three types of potassium currents were found in each investigated neuron. The mean densities of slow and fast inactivating potassium currents increased during ontogenetic development. The densities of non-inactivating delayed rectifier potassium current decreased in the first week of ontogenetic development and did not change thereafter.  相似文献   

4.
Outer hair cells of the cultured organ of Corti from newborn rats (0-11 days after birth) were studied in the whole-cell patch-clamp configuration. A voltage-activated sodium current was detected in 97% (n = 109) of the cells at 0-9 days after birth. The properties of this current were: (1) its activation and inactivation kinetics were fast and voltage-dependent, (2) the voltage at half-maximum activation was -45.0 mV, (3) its steady-state inactivation was temperature-sensitive (the half-inactivating voltage was -92.6 mV at 23 degrees C and -84.8 mV at 37 degrees C), (4) the reversal potential (80 mV) was close to the sodium equilibrium potential and currents could be abolished by the removal of extracellular sodium, and (5) tetrodotoxin blocked the current with a Kd of 474 nmol/l. Current amplitudes were up to 1.7 nA at room temperature. Mean current amplitudes showed a developmental time course with a maximum at postnatal days 3 and 7 for outer hair cells from the basal and apical part of the cochlea, respectively. In current-clamp mode cells had membrane potentials of -59.7 +/- 11.7 mV (n = 9). When cells were hyperpolarized by constant current injection, depolarizing currents were able to trigger action potentials. At 18 days after birth, sodium currents were greatly reduced and barely detectable. The results show that, unlike adult outer hair cells, immature outer hair cells regularly express voltage-gated sodium channels. However, due to mismatching of the sodium current inactivation range and membrane potential in vitro, a physiological function appears questionable.  相似文献   

5.
In cardiac ventricular myocytes, membrane depolarization leads to the inactivation of the Na channel and Ca channel ionic currents. The inactivation of the ionic currents has been associated with a reduction of the gating charge movement ("immobilization") which governs the activation of Na channels and Ca channels. The nature of the apparent "immobilization" of the charge movement following depolarization was explored in embryonic chick ventricular myocytes using voltage protocols applied from depolarized holding potentials. It was found that although all of the charge was mobile following inactivation, the voltage dependence of its movement was shifted to more negative potentials. In addition, the shift in the distribution of the Na channel charge could be differentiated from that of the Ca channel charge on the basis of kinetic as well as steady-state criteria. These results suggest that the voltage-dependent activation of Na channel and Ca channel charge movements leads to conformational changes and charge rearrangements that differentially bias the movements of these voltage sensors, and concomitantly produce channel inactivation.  相似文献   

6.
The channel underlying the slow component of the voltage-dependent delayed outward rectifier K+ current, I(Ks), in heart is composed of the minK and KvLQT1 proteins. Expression of the minK protein in Xenopus oocytes results in I(Ks)-like currents, I(sK), due to coassembly with the endogenous XKvLQT1. The kinetics and voltage-dependent characteristics of I(sK) suggest a distinct mechanism for voltage-dependent gating. Currents recorded at 40 mV from holding potentials between -60 and -120 mV showed an unusual "cross-over," with the currents obtained from more depolarized holding potentials activating more slowly and deviating from the Cole-Moore prediction. Analysis of the current traces revealed two components with fast and slow kinetics that were not affected by the holding potential. Rather, the relative contribution of the fast component decreased with depolarized holding potentials. Deactivation and reactivation, after a short period of repolarization (100 ms), was markedly faster than the fast component of activation. These gating properties suggest a physiological mechanism by which cardiac I(Ks) may suppress premature action potentials.  相似文献   

7.
Na+ currents in adult rat large dorsal root ganglion neurons were recorded during long duration voltage-clamp steps by patch clamping whole cells and outside-out membrane patches. Na+ current present >60 ms after the onset of a depolarizing pulse (late Na+ current) underwent partial inactivation; it behaved as the sum of three kinetically distinct components, each of which was blocked by nanomolar concentrations of tetrodotoxin. Inactivation of one component (late-1) of the whole cell current reached equilibrium during the first 60 ms; repolarizing to -40 or -50 mV from potentials of -30 mV or more positive gave rise to a characteristic increase in current (tau >/= 5 ms), attributed to removal of inactivation. A second component (late-2) underwent slower inactivation (tau > 80 ms) at potentials more positive than -80 mV, and steady-state inactivation appeared complete at -30 mV. In small membrane patches, bursts of brief openings (gamma = 13-18 pS) were usually recorded. The distribution of burst durations indicated that two populations of channel were present with inactivation rates corresponding to late-1 and late-2 macroscopic currents. The persistent Na+ current in the whole cell that extended to potentials more positive than -30 mV appeared to correspond to sporadic, brief openings that were recorded in patches (mean open time approximately 0.1 ms) over a wide potential range. None of the three types of gating described corresponded to activation/inactivation gating overlap of fast transient currents.  相似文献   

8.
1. Depolarization-activated, calcium-independent potassium (K+) currents were studied with the use of whole cell voltage-clamp recording from neostriatal neurons acutely isolated from adult (> or = 4 wk old) rats. The whole cell K+ current was composed of transient and persistent components. The aims of the experiments were to isolate the persistent component and then to characterize its voltage dependence and kinetics. 2. Application of 10 mM 4-aminopyridine (4-AP) completely blocked the transient currents while reducing the persistent current by approximately 40% [50% inhibitory concentration (IC50), of blockable current = 125 microM]. The persistent K+ current also was reduced by tetraethylammonium (TEA). Two components to the TEA block were present, having IC50s of 125 microM (23% of the blockable current) and 5.9 mM (77% of the blockable current). Collectively, these results suggested that the persistent components of the total K+ current was pharmacologically heterogeneous. The properties of the 4-AP-resistant, persistent K+ current (IKrp) were subsequently studied. 3. The kinetics of activation and deactivation of IKrp were voltage dependent. Examination of the entire activation/deactivation time constant profile showed that it was bell shaped, with time constants being moderately rapid (tau approximately 50 ms) at membrane potentials corresponding to the resting potential of neostriatal cells (approximately -80 mV), becoming considerably longer (tau approximately 100 ms) at potentials near the cells' spike thresholds (approximately -45 mV), and decreasing to a minimum (tau approximately 5 ms) at potentials associated with the peak of the cells' action potentials (approximately +20 mV). The inactivation kinetics of IKrp also were voltage dependent. The time constants of inactivation varied between 1 and 8 s at potentials between -10 and +35 mV. 4. Unlike persistent K+ currents in many other cell types, IKrp activated at relatively hyperpolarized membrane potentials (approximately -70 mV). The Boltzmann function describing activation had a half-activation voltage of -13 mV and a slope factor of 12 mV. In addition, the Boltzmann function describing the voltage dependence of inactivation of IKrp had a relatively depolarized half-inactivation voltage of -55 and a large slope factor of 19 mV, indicating that this current was available over a broad range of membrane potentials (between -100 and -10 mV). 5. Neostriatal neurons recorded in vivo exhibit subthreshold shifts in membrane potential of variable duration (tens of ms to s) from a hyperpolarized resting state to a depolarized state that is limited in amplitude just below spike threshold. The voltage dependence of activation and inactivation of IKrp indicates that it will be available on depolarization from the hyperpolarized state. However, the slow activation rate of this current suggests that it will contribute little either to limiting the amplitude of the initial depolarization associated with entry into the depolarized state or to depolarizing episodes of short duration (e.g., < 50 ms). However, IKrp should limit the amplitude of membrane depolarizations associated with prolonged excursions into the depolarized state.  相似文献   

9.
The voltage sensor of the sodium channel is mainly comprised of four positively charged S4 segments. Depolarization causes an outward movement of S4 segments, and this movement is coupled with opening of the channel. A mutation that substitutes a cysteine for the outermost arginine in the S4 segment of the second domain (D2:R1C) results in a channel with biophysical properties similar to those of wild-type channels. Chemical modification of this cysteine with methanethiosulfonate-ethyltrimethylammonium (MTSET) causes a hyperpolarizing shift of both the peak current-voltage relationship and the kinetics of activation, whereas the time constant of inactivation is not changed substantially. A conventional steady state inactivation protocol surprisingly produces an increase of the peak current at -20 mV when the 300-ms prepulse is depolarized from -190 to -110 mV. Further depolarization reduces the current, as expected for steady state inactivation. Recovery from inactivation in modified channels is also nonmonotonic at voltages more hyperpolarized than -100 mV. At -180 mV, for example, the amplitude of the recovering current is briefly almost twice as large as it was before the channels inactivated. These data can be explained readily if MTSET modification not only shifts the movement of D2/S4 to more hyperpolarized potentials, but also makes the movement sluggish. This behavior allows inactivation to have faster kinetics than activation, as in the HERG potassium channel. Because of the unique properties of the modified mutant, we were able to estimate the voltage dependence and kinetics of the movement of this single S4 segment. The data suggest that movement of modified D2/S4 is a first-order process and that rate constants for outward and inward movement are each exponential functions of membrane potential. Our results show that D2/S4 is intimately involved with activation but plays little role in either inactivation or recovery from inactivation.  相似文献   

10.
Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as "charge immobilization" (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567-590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at -90 mV return potential changed from a single fast component to at least two components, the slower requiring approximately 200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at -120 and -90 mV. In contrast, at higher potentials (-70 and -50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of "parallel" inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region.  相似文献   

11.
1. Ca inward current and the corresponding phasic component of tension were measured in frog atrial muscle under voltage-clamp conditions in Na-free (Li) Ringer solution with tetrodotoxin (TTX) added. 2. The quantity of Ca ions entering the cell upon depolarization, delta[Ca]i, was linearly related to peak phasic tension. 3. The voltage dependence of the steady-state inactivation of the Ca-carrying system, f infinity, against voltage yielded similar relationships whether determined directly from variations of Ca inward current or peak phasic tension. The Ca system was almost fully available at potentials more negative than -45 mV and almost fully inactivated at potentials more positive than +10 mV. 4. It was established that the time- and voltage-dependence of Ca current and of phasic tension are directly related. The time constants of Ca activation, tau f, were comparable in the range of membrane potential investigated (-20 to +25 mV), whether determined directly from the decay of Ca current or indirectly from peak phasic tension. 5. It was concluded that the Ca current, ICa, directly activates phasic contraction and that either parameter can be used as an indicator of the kinetics of the Ca-carrying system. Peak phasic tension was used to determine tau f further in the membrane potential range in which interference by other membrane currents renders direct analysis of Ca current difficult. 6. The tau f against voltage relationship determined from phasic tension showed that the inactivation process of the Ca-carrying system is slowest at membrane potentials around -13 mV (tau f = 55 msec) and that the rate of inactivation increases with both increasing and decreasing depolarizations. 7. It is suggested that normal repolarization in frog myocardium depends mainly on the decay of Ca inward current rather than on an increase of outward current.  相似文献   

12.
A pair of tyrosine residues, located on the cytoplasmic linker between the third and fourth domains of human heart sodium channels, plays a critical role in the kinetics and voltage dependence of inactivation. Substitution of these residues by glutamine (Y1494Y1495/QQ), but not phenylalanine, nearly eliminates the voltage dependence of the inactivation time constant measured from the decay of macroscopic current after a depolarization. The voltage dependence of steady state inactivation and recovery from inactivation is also decreased in YY/QQ channels. A characteristic feature of the coupling between activation and inactivation in sodium channels is a delay in development of inactivation after a depolarization. Such a delay is seen in wild-type but is abbreviated in YY/QQ channels at -30 mV. The macroscopic kinetics of activation are faster and less voltage dependent in the mutant at voltages more negative than -20 mV. Deactivation kinetics, by contrast, are not significantly different between mutant and wild-type channels at voltages more negative than -70 mV. Single-channel measurements show that the latencies for a channel to open after a depolarization are shorter and less voltage dependent in YY/QQ than in wild-type channels; however the peak open probability is not significantly affected in YY/QQ channels. These data demonstrate that rate constants involved in both activation and inactivation are altered in YY/QQ channels. These tyrosines are required for a normal coupling between activation voltage sensors and the inactivation gate. This coupling insures that the macroscopic inactivation rate is slow at negative voltages and accelerated at more positive voltages. Disruption of the coupling in YY/QQ alters the microscopic rates of both activation and inactivation.  相似文献   

13.
Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44-1.1 mM) or putrescine (approximately 0.4 mM) to the intracellular milieu where endogenous polyamines remained, and then examined outward IRK1 currents using the whole-cell patch-clamp method at 5.4 mM external K+. Without internal Mg2+, small outward currents flowed only at potentials between -80 (the reversal potential) and approximately -40 mV during voltage steps applied from -110 mV. The strong inward rectification was mainly caused by the closed state of the activation gating, which was recently reinterpreted as the endogenous-spermine blocked state. With internal Mg2+, small outward currents flowed over a wider range of potentials during the voltage steps. The outward currents at potentials between -40 and 0 mV were concurrent with the contribution of Mg2+ to blocking channels at these potentials, judging from instantaneous inward currents in the following hyperpolarization. Furthermore, when the membrane was repolarized to -50 mV after short depolarizing steps (> 0 mV), a transient increase appeared in outward currents at -50 mV. Since the peak amplitude depended on the fraction of Mg(2+)-blocked channels in the preceding depolarization, the transient increase was attributed to the relief of Mg2+ block, followed by a re-block of channels by spermine. Shift in the holding potential (-110 to -80 mV), or prolongation of depolarization, increased the number of spermine-blocked channels and decreased that of Mg(2+)-blocked channels in depolarization, which in turn decreased outward currents in the subsequent repolarization. Putrescine caused the same effects as Mg2+. When both spermine (1 microM, an estimated free spermine level during whole-cell recordings) and putrescine (300 microM) were applied to the inside-out patch membrane, the findings in whole-cell IRK1 were reproduced. Our study indicates that blockage of IRK1 by molecules with distinct affinities, spermine and Mg2+ (putrescine), elicits a transient increase in the outward IRK1, which may contribute to repolarization of the cardiac action potential.  相似文献   

14.
The actions of potent mammalian neurotoxins isolated from the venom of two Australian funnel-web spiders were investigated using both electrophysiological and neurochemical techniques. Whole-cell patch clamp recording of sodium currents in rat dorsal root ganglion neurons revealed that versutoxin (VTX), isolated from the venom of Hadronyche versuta, produced a concentration-dependent slowing or removal of tetrodotoxin-sensitive (TTX-S) sodium current inactivation and a reduction in peak TTX-S sodium current. In contrast, VTX had no effect on tetrodotoxin-resistant (TTX-R) sodium currents or potassium currents. VTX also shifted the voltage dependence of sodium channel activation in the hyperpolarizing direction and increased the rate of recovery from inactivation. Ion flux studies performed in rat brain synaptosomes also revealed that robustoxin (RTX), from the venom of Atrax robustus, and VTX both produced a partial activation of 22Na+ flux and an inhibition of batrachotoxin-activated 22Na+ flux. This inhibition of flux through batrachotoxin-activated channels was not due to an interaction with neurotoxin receptor site 1 since [3H]saxitoxin binding was unaffected. In addition, the partial activation of 22Na+ flux was not enhanced in the presence of alpha-scorpion toxin and further experiments suggest that VTX also enhances [3H]batrachotoxin binding. These selective actions of funnel-web spider toxins on sodium channel function are comparable to those of alpha-scorpion and sea anemone toxins which bind to neurotoxin receptor site 3 on the channel to slow channel inactivation profoundly. Also, these modifications of sodium channel gating and kinetics are consistent with actions of the spider toxins to produce repetitive firing of action potentials.  相似文献   

15.
Granule cells are the most numerous neurons in the cochlear nucleus, but, because of their small size, little information on their membrane properties and ionic currents is available. We used an in vitro slice preparation of the rat ventral cochlear nucleus to make whole-cell recordings from these cells. Under current clamp, some granule neurons fired spontaneous action potentials and all generated a train of action potentials on depolarization (threshold current, 10-35 pA). Hyperpolarization increased the latency to the first action potential evoked during a subsequent depolarization. We examined which voltage-gated currents might underlie this latency shift. In addition to a fast inward Na+ current, depolarization activated two outward potassium currents. A transient current was rapidly inactivated by membrane potentials positive to -60 mV, while a second, more slowly inactivating current was observed following the decay of the transient current. No hyperpolarization-activated conductances were observed in these cells. Modelling of the currents suggests that removal of inactivation on hyperpolarization accounts for the increased action potential latency in granule cells. Such a mechanism could account for the 'pauser'-type firing patterns of the fusiform cells which receive a prominent projection from the granule cells in the dorsal cochlear nucleus.  相似文献   

16.
In this study we have expressed and characterized recombinant cardiac and skeletal muscle sodium channel alpha subunits in tsA-201 cells under identical experimental conditions. Unlike the Xenopus oocyte expression system, in tsA-201 cells (transformed human embryonic kidney) both channels seem to gate rapidly, as in native tissue. In general, hSkM1 gating seemed faster than hH1 both in terms of rate of inactivation and rate of recovery from inactivation as well as time to peak current. The midpoint of the steady-state inactivation curve was approximately 25 mV more negative for hH1 compared with hSkM1. In both isoforms, the steady-state channel availability relationships ("inactivation curves") shifted toward more negative membrane potentials with time. The cardiac isoform showed a minimal shift in the activation curve as a function of time after whole-cell dialysis, whereas hSkM1 showed a continued and marked negative shift in the activation voltage dependence of channel gating. This observation suggests that the mechanism underlying the shift in inactivation voltage dependence may be similar to the one that is causing the shift in the activation voltage dependence in hSkM1 but that this is uncoupled in the cardiac isoform. These results demonstrate the utility and limitations of measuring cardiac and skeletal muscle recombinant Na+ channels in tsA-201 cells. This baseline characterization will be useful for future investigations on channel mutants and pharmacology.  相似文献   

17.
Two distinct morphological subtypes of astrocytes have been shown to express Na+ currents that differ biophysically and pharmacologically. Using an in vitro model for reactive gliosis, we recently reported marked changes in Na+ and K+ channel expression by astrocytes induced to proliferate. Using this in vitro assay in which a confluent monolayer of astrocytes is mechanically scarred to induce gliosis, we now demonstrate that sodium currents of scar-associated cells, in addition to doubling in current density, also switch from being tetrodotoxin-sensitive(TTX-S, IC50 8 nM) to being approximately 40-fold more TTX-resistant (TTX-R,IC50 314 nM). These changes occurred within 6 h after injury and were not associated with any notable changes in cell morphology. Changes in biophysical properties were analyzed for the two current types. The activation curve for TTX-R currents demonstrated a significant depolarized shift versus that of TTX-S currents (P 相似文献   

18.
To better understand why sensory neurons express voltage-gated Na+ channel isoforms that are different from those expressed in other types of excitable cells, we compared the properties of the hNE sodium channel [a human homolog of PN1, which is selectively expressed in dorsal root ganglion (DRG) neurons] with that of the skeletal muscle Na+ channel (hSkM1) [both expressed in human embryonic kidney (HEK293) cells]. Although the voltage dependence of activation was similar, the inactivation properties were different. The V1/2 for steady-state inactivation was slightly more negative, and the rate of open-state inactivation was approximately 50% slower for hNE. However, the greatest difference was that closed-state inactivation and recovery from inactivation were up to fivefold slower for hNE than for hSkM1 channels. TTX-sensitive (TTX-S) currents in small DRG neurons also have slow closed-state inactivation, suggesting that hNE/PN1 contributes to this TTX-S current. Slow ramp depolarizations (0.25 mV/msec) elicited TTX-S persistent currents in cells expressing hNE channels, and in DRG neurons, but not in cells expressing hSkM1 channels. We propose that slow closed-state inactivation underlies these ramp currents. This conclusion is supported by data showing that divalent cations such as Cd2+ and Zn2+ (50-200 microM) slowed closed-state inactivation and also dramatically increased the ramp currents for DRG TTX-S currents and hNE channels but not for hSkM1 channels. The hNE and DRG TTX-S ramp currents activated near -65 mV and therefore could play an important role in boosting stimulus depolarizations in sensory neurons. These results suggest that differences in the kinetics of closed-state inactivation may confer distinct integrative properties on different Na+ channel isoforms.  相似文献   

19.
Whole-cell voltage clamp techniques were used to characterize the kinetics of INa in immature (P3-5) and older (P > 25) acutely isolated rat CA1 hippocampal neurones. Fast-rising and fast-inactivating currents were recorded at all stages of maturation, evocable from Vm values of -55 to -50 mV. Currents were sensitive to TTX (1 microM) and to sodium removal from the perfusate. Current density and maximum slope conductance increased with maturation. Current decay was described by two exponentials, the faster component dominating at -35 mV or more depolarized Vm values; the ratio fast/slow inactivating component decreased with maturation. The voltage-dependence of conductance was taken as an approximation of m infinity. In younger cells, V1/2 values of the steady-state inactivation (h infinity) and activation curves (m infinity) were depolarized. Shifts of h infinity and m infinity curves were accompanied by shifts in the corresponding tau h and tau m voltage-dependence curves. In younger cells, activation curves had comparatively higher slope factors (Vs), which is an indication of a lower voltage sensitivity of activation. m infinity, tau m, h infinity, and tau h parameters were used to calculate the forward and backward activation and inactivation rate constants (alpha m, beta m, alpha h and beta h). P3-5 cells had relatively higher beta m values accounting for the lower voltage sensitivity of activation. The findings are an indication of a dominant channel variety in the younger cells with a closed state higher probability. The results are consistent with lower depolarization rates previously reported in CA1 cells at early stages of maturation. Faster inactivation due to poor expression of the slower inactivating component may compensate for poorer repolarization mechanisms due to the immaturity of outward currents previously reported at early stages of maturation.  相似文献   

20.
Over 20 different missense mutations in the alpha subunit of the adult skeletal muscle Na channel have been identified in families with either myotonia (muscle stiffness) or periodic paralysis, or both. The V445M mutation was recently found in a family with myotonia but no weakness. This mutation in transmembrane segment IS6 is novel because no other disease-associated mutations are in domain I. Na currents were recorded from V445M and wild-type channels transiently expressed in human embryonic kidney cells. In common with other myotonic mutants studied to date, fast gating behavior was altered by V445M in a manner predicted to increase excitability: an impairment of fast inactivation increased the persistent Na current at 10 ms and activation had a hyperpolarized shift (4 mV). In contrast, slow inactivation was enhanced by V445M due to both a slower recovery (10 mV left shift in beta(V)) and an accelerated entry rate (1.6-fold). Our results provide additional evidence that IS6 is crucial for slow inactivation and show that enhanced slow inactivation cannot prevent myotonia, whereas previous studies have shown that disrupted slow inactivation predisposes to episodic paralysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号