首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(16):13199-13205
Crystalline phase evolution through merely adjusting composition was achieved in silicate glass ceramics containing LunOn-1Fn+2 (n = 5–10) nanocrystals. Orthorhombic or cubic phase nanocrystals were precipitated in the aluminosilicate glass matrix after thermal treatment together with varying the Na2O/NaF ratio. Oxyfluoride nanocrystals with quasi-spherical shape show homogenous and dense distribution in glass matrix by transmission electron microscopy measurement. Intense upconversion and mid-infrared emissions were realized in these glass ceramics compared to the precursor glass, and the emission spectral shapes, relative emission intensity and fluorescence decay curves of Er3+ in cubic LuOF embedded samples exhibit remarkable differences due to the crystal phase dependent effect in glass ceramics. These results indicate that the crystallization and luminescence properties of oxyfluoride glass ceramics could be modified through the alteration of glass composition, which could be used for the development of novel glass ceramics and design of luminescent properties.  相似文献   

2.
The transparent polycrystalline erbium and ytterbium co-doped yttrium aluminum garnet (Er,Yb:YAG) ceramics with various Yb contents from 5% to 25% were prepared by the solid-state reaction and the vacuum-sintering technique. The in-line transmittances of the mirror-polished ceramics exceed 80% from the visible band to the infrared band. The samples are very compact with few pores. The average grain size of the Er,Yb:YAG ceramic is about 15 μm. The upconversion luminescence spectra, infrared luminescence spectra and luminescence decay curves of the ceramics were observed and discussed. For 1%Er doped YAG ceramic, the best ion ratio of Yb3+ and Er3+ is around 15:1.  相似文献   

3.
《Ceramics International》2020,46(3):3345-3352
The luminescent characteristics of spherical titanium dioxide (TiO2) nanoparticles (NP's) doped with Sm3+/Yb3+ and Tm3+/Yb3+ with and without a silica coating were analyzed. These nanoparticles were synthesized using the spray pyrolysis technique and coated with silica through a wet chemical process. The Sm3+/Tm3+ and Yb3+ doping induces a triphasic poly-crystalline structure of rutile and anatase TiO2 and a Sm2Ti2O7/Tm2Ti2O7 cubic phase. A Williamson-Hall analysis was used to monitor the tensions of the NP's crystallites at the various doping concentrations and with addition of the silica shell. The luminescent spectra presented the characteristic emission peaks for the electronic energy levels transitions of the Sm3+/Tm3+ and Yb3+ ions. The Sm3+/Yb3+ co-doped NP's showed a maximum emission peak in the visible region at 612 nm, associated with 4G5/26H7/2 transitions of the Sm3+ ions. The IR emission peak at 973 nm (2F5/22F7/2) pertaining to Yb3+. For the combination of Tm3+/Yb3+, two emissions associated with Tm3+ ions were observed at 440 nm (1D23F4) and 806 nm (3H43H6). The emission at 973 nm (2F5/22F7/2) is correlated to the Yb3+ ions. Silica coating of the NP's resulted in luminescence emission intensity increase of about 4 times.  相似文献   

4.
We have synthesized Li2O–Nb2O5–ZrO2–SiO2 glasses and subsequently crystallized them with different CuO contents (0–0.3 mol% in the steps of 0.05) as nucleating agents and characterized them by XRD, SEM and DSC. We have also studied IR, Raman, ESR, optical absorption photoluminescence and dielectric properties to explore the influence of copper valance states and their coordination with oxygen on structural and optoelectronic aspects of the samples. These studies have indicated that there is a possibility for the copper ions to exist in Cu+ and Cu3+ states (in addition to Cu2+ state) in these glass ceramics and participate in the glass network forming. Finally, we have undertaken photoinduced second harmonic generation studies (after the samples were dc field treated at elevated temperatures) with 10 ns Er:glass laser (of wavelength 1540 nm with power densities up to 1.5 GW/cm2) to examine the suitability of these materials for optically operated devices. The analysis of the results of non-linear optical studies has shown that 0.2 mol% of CuO is the optimal concentration for getting the highest values of second order susceptibility coefficients.  相似文献   

5.
Highly transparent Tm3Al5O12 (TmAG) ceramics were fabricated by solid-state reaction and vacuum sintering. Densification, microstructure evolution, mechanical, thermal, and optical properties of the TmAG ceramics were investigated. Fully dense TmAG ceramic with average grain size of 15 μm was obtained by sintering at 1780 °C for 20 h. The in-line transmittance was 80.5% at 2000 nm. The absorption coefficients at 682 nm and 785 nm were 8.03 cm−1 and 8.33 cm−1, respectively. The Vickers hardness, the Young modulus, the bending strength, and the fracture toughness values were 15.14 GPa, 343 GPa, 230 MPa, and 2.35 MPa m1/2, respectively. The thermal conductivity at room temperature was 3.3 W/m K and the average linear thermal expansion coefficient from 20 °C to 1000 °C was 8.915 × 10−6 K.  相似文献   

6.
Soda lime phosphate bioglass–ceramics with incorporation of small additions of TiO2 were prepared in the metaphosphate and pyrophosphate region, using an appropriate two-step heat treatment of controlled crystallization defined by differential thermal analysis results. Identification and quantification of crystalline phases precipitated from the soda lime phosphate glasses were performed using X-ray diffraction analysis. Calcium pyrophosphate (β-Ca2P2O7), sodium metaphosphate (NaPO3), calcium metaphosphate (β-Ca(PO3)2), sodium pyrophosphate (Na4P2O7), sodium calcium phosphate (Na4Ca(PO3)6) and sodium titanium phosphate (Na5Ti(PO4)3) phases were detected in the prepared glass–ceramics. The degradation of the prepared glass–ceramics was carried out for different periods of time in simulated body fluid at 37 °C using granules in the range 0.300–0.600 mm. The released ions were estimated by atomic absorption spectroscopy and the surface textures were measured by scanning electron microscopy. Investigation of in vitro bioactivity of the prepared glass–ceramics was done by the measurement of the infrared reflection spectra for the samples after immersion in the simulated body fluid for different periods at 37 °C. The result showed that no apatite layer was formed on the surface of the samples and the dominant phase remained on the surface was β-Ca2P2O7, which is known for its bioactivity.  相似文献   

7.
《Ceramics International》2016,42(4):4642-4647
Tunable up-conversion luminescent material KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) has been synthesized by a typical hydrothermal process. Under 980 nm laser diode (LD) excitation, the emission intensity and the corresponding luminescence colors of KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) have been investigated in detail. The energy transfer from the Yb3+ sensitizer to Ho3+, Er3+ and Tm3+ activators plays an important role in the development of color-tunable single- phased phosphors. The emission intensity keep balance through control of the Ho3+ co-doping concentrations, white light was experimentally shown at KY(MoO4)2: 20 mol% Yb3+, 0.8 mol% Er3+, 0.5 mol% Tm3+, 1.0 mol% Ho3+ phosphor with further calcination at 800 °C for 4 h under 980 nm laser excitation. The color tunability, high quality of white light and high intensity of the emitted signal make these up-conversion (UC) phosphors excellent candidates for applications in solid-state lighting.  相似文献   

8.
《Ceramics International》2015,41(6):7605-7610
A novel technique for the fabrication of chalcogenide nanocomposites based on chalcogenide glass (ChGs) and manganese phtalocyanine (MnPc) is presented. The structural and optical characterization of obtained composites in comparison to chalcogenide glass was carried out. Two-component nanocomposite films were obtained by simultaneous vacuum co-condensation of the ChGs components and organic dye on the substrate surface. The spatial arrangement of the two evaporators and substrates in a vacuum chamber allowed obtain samples with varied composite ratio. ChGs films optical band gap values were not sufficiently changed with growth rate and films thickness. It was shown that in case of dye concentration reduction for more than three orders specific absorption per dye molecule will be decreased by two orders. At greater concentrations solid solution of dye is clusterized, dye is distinctly aggregated and the absorbance is nearly the same as of the pure dye in the form of thin film. Therefore composite properties changes from cluster solution into molecular solution and thus dye molecule absorbance decrease. Relation of specific dye absorption on composite concentration was explained as electrons exchange with donor and acceptor subsystems and corresponding electron levels population. Sketch of electron density diagrams and corresponding bonds schema for composites are presented.  相似文献   

9.
Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with SrO–B2O3–SiO2 glass additives were prepared via the solid state reaction route. The effects of glass contents on the sintering behavior, dielectric properties, microstructures, and energy storage properties of BSZT ceramics were investigated. Dielectric breakdown strength of 22.4 kV/mm was achieved for BSZT ceramics with 20 wt% glass addition. Dielectric relaxation behavior was observed in dielectric loss versus temperature plots. In order to investigate the mechanism of dielectric breakdown performance, the relationship between dielectric breakdown strength and grain boundary barrier was studied by the measurements of breakdown strength and activation energy. A discharged energy density of 0.45 J/cm3 with an energy efficiency of 88.2% was achieved for BSZT ceramics with 5 wt% glass addition.  相似文献   

10.
Silicon carbide ceramics are very interesting materials to engineering applications because of their properties. These ceramics are produced by liquid phase sintering (LPS), where elevated temperature and time are necessary, and generally form volatile products that promote defects and damage their mechanical properties. In this work was studied the infiltration process to produce SiC ceramics, using shorter time and temperature than LPS, thereby reducing the undesirable chemical reactions. SiC powder was pressed at 300 MPa and pre-sintered at 1550 °C for 30 min. Unidirectional and spontaneous infiltration of this preform by Al2O3/Y2O3 liquid was done at 1850 °C for 5, 10, 30 and 60 min. The kinetics of infiltration was studied, and the infiltration equilibrium happened when the liquid infiltrated 12 mm into perform. The microstructures show grains of the SiC surrounded by infiltrated additives. The hardness and fracture toughness are similar to conventional SiC ceramics obtained by LPS.  相似文献   

11.
Transparent SiO2 - Al2O3 - Na2O - CaO - BaF2 - YbF3 glass ceramics (GC) doped with Er3+ ions were successfully fabricated by a melt-quenching technique with subsequent heat treatment. The formation of BaYbF5 nano-crystalline phase was confirmed by X-ray diffraction and transmission electron microscopy. Compared to the precursor glass (PG), the clearer Stark splitting and greatly enhanced up-conversion (UC) emission in GC indicate that Er3+ ions mainly enter into BaYbF5 nanocrystals with low phonon energy after crystallization. The temperature dependent on purple UC emission ratio (which is due to the Er3+ 4G11/24I15/2 and 2H9/24I15/2 transitions) and common green UC emission ratio with low-power excitation in BaYbF5 GC have been studied respectively. In addition, the UC mechanisms in PG and GC are illustrated and analyzed. The outstanding properties of Er3+-doped BaYbF5 transparent GC may present potential applications in all-solid-state UC lasers and optical fiber temperature sensors.  相似文献   

12.
Effects of Zn substitution for Mg on the crystal structure, lattice vibrations and microwave dielectric properties of Ba(Mg1/3,Ta2/3)O3 (BMT) ceramics were investigated. Raman scattering spectra for Ba([Mg1−xZnx]1/3Ta2/3)O3 (BMZT) ceramics, with x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, were measured at room temperature. The Raman result shows a dominance of 1:2 ordered structure at all Zn substitution contents. All Raman modes shift to lower frequencies with increasing Zn substitution. Higher Qf value correlates well with narrower width of the breathing Raman mode A1g(4) and larger relative intensity of 1:2 long-range-ordered mode Eg(2) in BMZT solid solution. First-principle calculation was performed to investigate the electronic structure of 1:2 ordered BMT and Ba(Zn1/3,Ta2/3)O3 (BZT). Covalent bond between Zn and O in BZT is much stronger than that between Mg and O in BMT due to the Zn 3d orbital. Zn substitution for Mg leads to longer and weaker Ta-O bonds, which may be one reason for the variation of Raman spectroscopy and microwave dielectric properties of BMZT system.  相似文献   

13.
Red-light-emitting phosphors of La2Mo2O9:Pr3+ and S-doped La2Mo2O9:Pr3+ were prepared by high temperature solid state reaction. Under the excitation of 450 nm blue light, all samples produced a red emission peak at 650 nm corresponding to the characteristic transition of Pr3+ (3P03F2). The dependence of Pr3+ doping content (x) on the luminescent intensity was analyzed, and the optimal doping content of Pr3+ was x=0.07. After a small quantity of sulfur was introduced into the system, the luminescence intensity of phosphors was obviously enhanced. The reasons for the enhancement of luminescence are due to improved crystallization after S doping and the relatively large electronegativity difference between S and Mo. Additionally, the coincidence of the excitation wavelength with the emission of GaN chips may recommend this phosphor system as a potential candidate for use in white light-emitting diodes.  相似文献   

14.
Yb3+/Er3+/Tm3+ doped transparent glass ceramic containing orthorhombic YF3 nanoparticles was successfully synthesized by a melt-quenching method. After glass crystallization, tremendously enhanced (about 5000 times) upconversion luminescence, obvious Start-splitting of emission bands as well as long upconversion lifetimes of Er3+/Tm3+ confirmed the incorporation of lanthanide activators into precipitated YF3 crystalline environment with low phonon energy. Furthermore, temperature-dependent upconversion luminescence behaviors of glass ceramic were systematically investigated to explore its possible application as optical thermometric medium. Impressively, both fluorescence intensity ratio of Er3+: 2H11/2  4I15/2 transition to Er3+: 4S3/2  4I15/2 one and fluorescence intensity ratio of Tm3+: 3F2,3  3H6 transition to the combined Tm3+: 1G4  3F4/Er3+: 4F9/2  4I15/2 ones were demonstrated to be applicable as temperature probes, enabling dual-modal temperature sensing. Finally, the thermal effect induced by the irradiation of 980 nm laser was found to be negligible in the glass ceramic sample, being beneficial to gain intense and precise probing signal and detect temperature accurately.  相似文献   

15.
In this article, transparent oxyfluoride glass ceramics containing β-NaYF4 nanocrystals were successfully prepared via Gd3+ doping. Compared to conventional non-doped glasses, the thermal treatment temperature required for the precipitation of β-NaYF4 nanocrystals can be lowered with the doping of Gd3+. Furthermore, under the same thermal treatment condition, more β-NaYF4 nanocrystals were precipitated in Gd3+ doped ones, which greatly improves the luminescence efficiency of rare earth doped glass ceramics. Possible mechanism for the Gd3+ doping induced enhanced upconversion luminescence phenomenon was proposed, based on thorough structural and optical characterizations. The results revealed that the doping of Gd3+ ions could decrease the crystallization activation energy and promote the formation of Y-F-Na bonding, which helps the precipitation of β-NaYF4 nanocrystals. Consequently, a large enhancement in upconversion luminescence was achieved. Moreover, the strategy can be successfully applied to the development of other glass ceramic systems for various optoelectronic applications.  相似文献   

16.
Tungsten oxide (WO3) nanoplates were synthesized by a 270 W microwave-hydrothermal reaction of Na2WO4·2H2O and citric acid (C6H8O7·H2O) in deionized water. X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to reveal the synthesis of WO3 complete rectangular nanoplates in the solution of 0.2 g citric acid for 180 min, with O-W-O FTIR stretching modes at 819 and 741 cm−1, and two prominent O-W-O Raman stretching modes at 804 and 713 cm−1. The 2.71 eV indirect energy gap, and 430-460 nm blue emission wavelength range of WO3 complete rectangular nanoplates were determined using UV-visible and photoluminescence (PL) spectrometers. The formation mechanism was also proposed according to the experimental results.  相似文献   

17.
A sol–gel chemical route was adopted to prepare the zinc oxide (ZnO) nanoparticles as small as 4 nm. UV-curable ZnO-acrylic nanocomposites were then prepared by employing 3-(trimethoxysilyl)propyl methacrylate (TPMA) as the surface modification agent of ZnO particles. UV–vis analysis revealed a high optical transparency (>95%) in visible light region for nanocomposite thin films with ZnO contents up to 20 wt.%. The addition of ZnO nanoparticles also enhanced the dielectric constants of nanocomposites and the dielectric constants greater than 4 in frequencies ranging from 1 to 600 MHz was obtained in the samples containing 10 wt.% of ZnO nanoparticles. A comparison of experimental results and theoretical calculation indicated that the interfacial polarizations in between ZnO nanoparticles and polymer matrix may play an important role in the enhancement of dielectric properties of nanocomposites.  相似文献   

18.
Nanostructured CeO2/CuO composites are synthesized using a facile hydrothermal reaction. Results signify that Cu ions prefer to enter into CeO2 lattice forming solid solution at low concentration, and would be transformed into CuO phase at moderate concentration. Moreover, the addition of CuO species into CeO2 promotes the reduction of Ce4+ and the creation of oxygen vacancy (VO) defects. Raman analyses confirm VO concentration initially increases and then decreases with the increasing CuO phase and the sample Ce1Cu2 exhibits the highest defect concentration. The room temperature ferromagnetic behavior is observed firstly in CeO2/CuO nonmagnetic system and the maximal saturation magnetization appears in Ce1Cu2. The emergent ferromagnetism appears to be relevant to the extensive VO defects, which can be interpreted by the indirect double-exchange model. The synthetic interaction between CeO2 and CuO results in the redshift of the bandgap in prepared CeO2/CuO nanocomposites.  相似文献   

19.
Pr3+/Gd3+ co-doped LiNbO3 phosphors were prepared by a traditional solid-state reaction method and their structure, photoluminescence, mechanoluminescence and thermoluminescence were investigated. The results showed that the LiNbO3 phase with a rhombohedral structure and an R3c space group was successfully prepared. Mechanoluminescence intensity in nonstoichiometric LiNbO3:Pr3+ was largely increased by introducing Gd3+ ions. The optimal co-doped concentration of Gd3+ was 1?mol% and the enhanced ML intensity of LiNbO3:0.01Pr3+, 0.01Gd3+ was about 177% times compared with that of LiNbO3:0.01Pr3+. The effect of Gd3+ co-dopants on trap levels were explored through thermoluminescence curves. The enhancement of mechanoluminescence intensity was suggested to be ascribed to the regulated trap quantities caused by co-doped Gd3+ ions. Appropriate co-dopants are proved to be effective sensitizers for mechanoluminescence materials.  相似文献   

20.
We fabricated xBaTiO3 (BT)/(1-x)[BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3] (BT-BMT-BF)?+?0.1?wt%MnCO3 composites by spark plasma sintering and investigated the effect of BT content x, BT powder size, and BT-BMT-BF composition on piezoelectric properties. For xBT/(1-x)(0.3BT-0.1BMT-0.6BF) +?0.1?wt%MnCO3 (x?=?0–0.75) composites with a 0.5-µm BT powder, the dielectric constant was increased with x, and the relative density was decreased at x?=?0.67 and 0.75, creating optimum BT content of x?=?0.50 with a piezoelectric constant d33 of 107?pC/N. When a larger 1.5-µm BT powder was utilized for the composite with x?=?0.50, the d33 value increased to 150?pC/N due to the grain size effect of the BT grains. To compensate for a compositional change from the optimum 0.3BT-0.1BMT-0.6BF due to partial diffusion between the BT and 0.3BT-0.1BMT-0.6BF grains, a 0.5BT/0.5(0.275BT-0.1BMT-0.625BF)?+?0.1?wt%MnCO3 composite with the 1.5-µm BT powder was fabricated. We obtained an increased d33 value of 166?pC/N. These results provided a useful composite design to enhance the piezoelectric properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号