首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Losses of nitrogen were investigated after applications of ammonium bicarbonate and urea to flooded rice at transplanting. Ammonia (NH3) volatilization was determined by direct micrometeorological methods, and total loss of fertilizer nitrogen (N) was measured by15N balance. All the loss appeared to be in gaseous forms, since there was no evidence of leaching and runoff was prevented. The difference between N loss and NH3 loss was thus assumed to be denitrification loss.Both NH3 volatilization and denitrification losses were large, being 39% and 33%, respectively, of the ammonium bicarbonate N, and 30% and 33%, respectively, of the urea N applied by farmers' methods.Ammonia fluxes from the field fertilized with ammonium bicarbonate were very high for two days, and then declined rapidly as the NH3 source in the floodwater diminished. Moderate fluxes from the field fertilized with urea continued over 6 days, but calculations showed that NH3 transfer from floodwater to atmosphere was retarded during the middle period of the experiment, particularly on day 2 when a thick algal scum appeared on the water surface. The results indicate that this algal mass obstructed the transport of NH3 across the water-air interface until the scum was dispersed by wind action. Nevertheless, the prolonged NH3 losses on the urea treatment were due primarily to high floodwater pH values promoted by the strong algal growth during the daylight hours.Nitrogen-15 balance studies showed that incorporation of fertilizer into drained soil substantially increased recoveries of fertilizer N in rice plants and soil compared with incorporation of fertilizer in the presence of standing floodwater. Ammonia loss measurements on these treatments when urea was applied suggested that the improvement in fertilizer N efficiency was due mainly to reductions in NH3 loss.  相似文献   

2.
Triticum aestivumThe fate of fertilizer nitrogen applied to dryland wheat was studied in the greenhouse under simulated Mediterranian-type climatic conditions. Wheat, L., was grown in 76-cm-deep pots, each containing 50–70 kg of soil, and subjected to different watering regimes. Two calcareous clay soils were used in the experiments, Uvalde clay (Aridic Calciustoll) and Vernon clay (Typic Ustochrept). Fertilizer nitrogen balance studies were conducted using various15N-labeled nitrogen sources, including ammonium nitrate, urea, and urea amended with urea phosphate, phenyl phosphorodiamidate (a urease inhibitor), and dicyandiamide (a nitrification inhibitor). Wheat yields were most significantly affected by available water. With additional water during the growing period, the recovery of fertilizer nitrogen by wheat increased and the fraction of fertilizer nitrogen remaining in the soil decreased. In the driest regimes, from 40 to 65% of the fertilizer nitrogen remained in the soils. In most experiments the gaseous loss of fertilizer nitrogen, as estimated from unaccounted for15N, was not significantly affected by water regime. The15N not accounted for in the plant and the soil at harvest ranged from 12 to 25% for ammonium nitrate and from 12 to 38% for regular urea. Direct measurement of labeled ammonia loss from soil indicated that ammonia volatilization probably was the main N loss mechanism. Low unaccounted-for15N from nitrate-labeled ammonium nitrate, 4 to 10%, indicated that N losses due to denitrification, gaseous loss from plants, or shedding of anthers and pollen were small or negligible. Amendment of urea with urea phosphate to form a 36% N and 7.3% P product was ineffective in reducing N loss. Dicyandiamide did not reduce N loss from urea presumably because N was not leached from the sealed pots and denitrification was insignificant. Amendment of urea with 2% phenyl phosphorodiamidate reduced N loss significantly. However, band placement of urea at as 2-cm soil depth was more effective in reducing N loss than was amendment of broadcast urea with phenyl phosphorodiamidate.  相似文献   

3.
A pot experiment was conducted in a greenhouse to assess the effect of rate and time of N application on yield and N uptake of wetland rice grown on a Rangsit acid sulfate soil (Sulfic Tropaquepts). Response of rice at N rates of 800, 1600 and 2400 mg N/pot (5 kg of soil) was compared between urea and ammonium sulfate when applied at two times: (i) full-rate basal at transplanting and (ii) one half at transplanting and one half at the PI stage. In addition, labelled15N sources were applied either at transplanting or at the PI stage to determine the nitrogen balance sheet in the soil/plant system.No significant difference in grain and straw yields between urea and ammonium sulfate at low rate was observed. At the higher N rates, urea produced higher yields than did ammonium sulfate regardless of timing. The highest yields were obtained when urea at the high N rate was applied either in a single dose or a split dose while lowest yields were observed particularly when ammonium sulfate at the same rate was applied. Split application of N fertilizer was shown to be no better than a single basal application. The occurrence of nutritional disorder, a symptom likely reflected by high concentration of Fe (II) in combination with soluble Al, was induced with high rate of ammonium sulfate.In terms of fertilizer N recovery by using15N-labelling, ammonium sulfate was more efficient than urea when both were applied at transplanting. In contrast, application at the PI stage resulted in higher utilization of urea than of ammonium sulfate. The recovery of labelled N in the soil was higher with urea than with ammonium sulfate when the two sources were applied at transplanting, while the opposite result was obtained when the same fertilizers were applied at the PI stage. The losses from urea and ammonium sulfate were not different when these fertilizers were applied at transplanting but loss from urea was higher than that from ammonium sulfate when both were applied at the PI stage.  相似文献   

4.
This paper reviews some of the benefits of polyolefin-coated fertilizers (POCFs) with accurate controlled release properties. They are helpful in developing innovative rice farming systems, such as no-till direct seeded rice with single basal fertilization and transplanting of rice seedlings with single basal fertilization. These new cultivation systems can increase fertilizer efficiency and reduce farming costs. The recovery of basal N can be increased from 22–23% with conventional broadcast application of ammonium sulfate or urea to 79% withco-situs application of polyolefin-coated urea. The no-till rice cultivation of transplanting of rice seedlings with single basal application of POCFs decreased the farming cost by 65% as compared to that of the conventional rice cultivation. Theco-situs application of POCFs containing NPK reduced nitrate leaching and nitrous oxide emissions from cultivated soils with heavy fertilization. Since POCFs have various nutrient composition and release types, a variety of application methods to agricultural and horticultural plants are being developed in Japan.  相似文献   

5.
Poor N fertilizer use efficiency by flooded rice is caused by gaseous losses of N. Improved fertilizer management and use of nitrification inhibitors may reduce N losses. A microplot study using15N-labelled urea was conducted to investigate the effects of fertilizer application method (urea broadcast, incorporated, deep-placed) and nitrification inhibitor [encapsulated calcium carbide (ECC)] treatments on emission of N2+N20 and total loss of applied N on a grey clay near Griffith, NSW, Australia. Both incorporation and deep placement of urea decreased N2+N2O emission compared to urea broadcast into the floodwater. Addition of ECC significantly (P < 0.05) reduced emission of N2+N20 from incorporated or deep-placed urea and resulted in increased exchangeable ammonium concentrations in the soil in both treatments. Fifty percent of the applied N was lost when urea was broadcast into the floodwater. Total N loss from the applied N was significantly (P < 0.05) reduced when urea was either incorporated or deep placed. In the presence of ECC the losses were reduced further and the lowest loss (34.2% of the applied N) was noted when urea was deep-placed with ECC.  相似文献   

6.
Total nitrogen loss and ammonia volatilization from applications of ammonium bicarbonate and urea to flooded rice (Oryza sativa L.) grown on an acidic lacustrine clay in China were measured by15N balance and micrometeorological methods. Attempts were also made to reduce nitrogen loss by using different methods of applying the fertilizers.Ammonia volatilization from ammonium bicarbonate was greater than that from urea (18.2% and 8.8%, respectively, of the applied N). The total loss of ammonia from urea in this study was less than the losses observed in similar studies elsewhere. This was presumably because of the low incident radiation and low floodwater pHs in this experiment.Denitrification losses, calculated as the difference between total nitrogen loss and ammonia loss, were 42.2% and 39.3%, respectively, for ammonium bicarbonate and urea, and thus were more important than ammonia losses from both types of fertilizer.The different management treatments studied had an appreciable effect on ammonia flux densities but did not reduce the overall loss as measured by15N-balance.  相似文献   

7.
Liquid nitrogen fertilizers are, per unit of N, generally cheaper than granulated ammonium nitrate because of lower production costs. Although very corrosive, the storage and handling of liquid nitrogen fertilizers does not usually present any problems. The applicability and efficiency of a commercial liquid nitrogen fertilizer (containing 39% N, half urea and half ammonium nitrate) on grassland was investigated in comparison with granulated ammonium nitrate (27% N). The liquid nitrogen fertilizer was applied on continuously grazed paddocks without any repercussions for animal health. No scorching was observed provided that certain measures were adopted while spraying the fertilizer: i.e. little dilution with water, use of low pressure and large droplets and application on dry grass in cloudy whether. In comparison with the granulated ammonium nitrate, the liquid nitrogen fertilizer was less efficient; dry matter yield and N-uptake of the grass treated with the liquid nitrogen fertilizer were 76% and 73% respectively of the dry matter yield and N-uptake of the grass treated with the granulated ammonium nitrate fertilizer.Fertilization, especially with nitrogen, represents the biggest single cost in grass production. Because liquid nitrogen fertilizers can be produced less expensively then granulated ones, their price per unit of N, delivered to the farmer, is also lower.Another advantage is that liquid fertilizers are easy to handle (despite being corrosive) and can be distributed uniformly over the field. The greatest advantage can be expected on the large grass areas of continuous grazing systems. Because of these benefits, an investigation was carried out to assess the potential use and efficiency of liquid nitrogen fetilizer in comparison with granulated ammonium nitrate nitrogen, from 1983 up to 1987. In 1983 and 1984, the grass quality, especially NH3 and NO3 concentration directly after spraying, and animal behaviour were assessed. From 1985 to 1987, the grass yield and nitrogen uptake were measured under mowing conditions.  相似文献   

8.
Experiments were conducted to monitor the movement and distribution of ammonium-N after placement of urea and ammonium sulfate supergranules at 5, 7.5, 10, and 15 cm. By varying depths of fertilizer placement, it is possible to determine the appropriate depth for placement machines. There were no significant differences in grain yields with nitrogen placed 5 and 15 cm deep. However, grain yields were significantly higher with deep placement of nitrogen than with split application of the fertilizer. The lower yields with split-applied nitrogen were due to higher nitrogen losses from the floodwater. The floodwater with split application had 78–98µg N ml–1 and that with deep-placed nitrogen had a negligible nitrogen concentration.Movement of NH 4 + -N in the soil was traced for various depths after fertilizer nitrogen application. The general movement after deep-placement of the ammonium sulfate supergranules was downward > lateral > upward from the placement site. Downward movement was prevalent in the dry season: fertilizer placed at 5–7.5 cm produced a peak of NH 4 + -N concentration at 8–12 cm soil depth; with placement at 15 cm, the fertilizer moved to 12–20 cm soil depth. Fertilizer placed at 10 cm tended to be stable. In the wet season, deep-placed N fertilizer was fairly stable and downward movement was minimal.A substantially greater percentage of plant N was derived from15N-depleted fertilizer when deep-placed in the reduced soil layer than that applied in split doses. The percent N recovery with different placement depths, however, did not vary from each other. The results suggest that nitrogen placement at a 5-cm soil depth is adequate for high rice yields in a clayey soil with good water control. In farmers' fields where soil and water conditions are often less than ideal, however, it is desirable to place nitrogen fertilizer at greater depths and minimize NH 4 + -N concentration in floodwater.  相似文献   

9.
Initial and residual effects of nitrogen (N) fertilizers on grain yield of a maize/bean intercrop grown on a deep, well-drained Humic Nitosol (66% clay, 3% organic carbon) were evaluated. Enriched (15N) N fertilizer was used to study the fate of applied N in two seasons: using urea (banded) at 50 kg N ha–1 in one season, and15N-enriched urea (banded), calcium ammonium nitrate (CAN, banded), and urea supergranules (USG, point placement) were applied in the other season (different field) at 100 kg N ha–1. Nitrogen fertilizer significantly (P = 0.05) increased equivalent maize grain yield in each season of application with no significant differences between N sources, i.e., urea, CAN, and USG. Profitmaximizing rates ranged from 75 to 97 kg N ha–1 and value: cost ratios ranged from 3.0 to 4.8. Urea gave the highest value: cost ratio in each season. Most (lowest measurement 81%) of the applied N was accounted for by analyzing the soil (to 150 cm depth) and plant material. Measurements for urea, CAN, and USG were not significantly different. The high N measurements suggest low losses of applied N fertilizer under the conditions of the study. Maize plant recovery ranged from 35 to 55%; most of this N (51–65%) was in the grain. Bean plant recovery ranged from 8 to 20%. About 34–43% of the applied N fertilizer remained in the soil, and most of it (about 70%) was within the top soil layer (0–30 cm). However, there were no significant equivalent maize grain increases in seasons following N application indicating no beneficial residual effect of the applied fertilizers.  相似文献   

10.
Nitrogen fertilization is a key input in increasing rice production in East, South, and Southeast Asia. The introduction of high-yielding varieties has greatly increased the prospect of increasing yields, but this goal will not be reached without great increases in the use and efficiency of N on rice. Nitrogen enters a unique environment in flooded soils, in which losses of fertilizer N and mechanisms of losses vary greatly from those in upland situations. Whereas upland crops frequently use 40–60% of the applied N, flooded rice crops typically use only 20–40%. There is a great potential for increasing the efficiency of N uptake on this very responsive crop to help alleviate food deficits in the developing world.This article reviews current use of N fertilizers (particularly urea) on rice, the problems associated with rice fertilization, and recent research results that aid understanding of problems associated with N fertilization of rice and possible avenues to increase the efficiency of N use by rice.  相似文献   

11.
In the southern U.S. rice belt it is recommended that rice (Oryza sativa L.) grown in the dry-seeded, delayed flood cultural system have the preflood N fertilizer applied and the field flooded at the fourth to fifth leaf stage of plant development. The objective of this field study was to determine if delaying the flood and preflood N application past the fifth leaf stage was detrimental to rice total N and fertilizer15N uptake, total dry matter, and grain yield. This study was conducted on a Crowley silt loam (Typic Albaqualfs) and a Perry clay (Vertic Haplaquepts). The preflood N fertilizer and flood were delayed 0, 7, 14, or 21 d past the fourth to fifth leaf stage, after which time a permanent flood was established and maintained until maturity. All treatments received 20.5 g N m–2 as15N-labeled urea in three topdress applications. All plant and soil samples were taken at maturity. Harvest index increased as the preflood N and flood were delayed past the 4 to 5 leaf stage. Total N in the grain + straw either decreased or showed a decreasing trend as the N and flood were delayed. Similarly, uptake of native soil N decreased as flood was delayed. Conversely, percent recovery of fertilizer N in the rice plant and the plant-soil system increased as the preflood N and flood were delayed. Rice grain yield was not significantly affected by delaying the preflood N and flood up to 21 d.Received....... . Published with permission of the Director of the Arkansas Agric. Exp. Stn. Project ARK01386. Supported in part by the Tennessee Valley Authority National Fertilizer and Environmental Research Center and the Arkansas Rice Research and Promotion Board.  相似文献   

12.
肥料中硝态氮、铵态氮、总氮的研究   总被引:1,自引:0,他引:1  
《云南化工》2017,(8):14-16
研究仅含硝态氮、铵态氮的肥料,结果表明,用GB/T8572-2010《复混肥料中总氮含量的测定蒸馏后滴定法》检测含有硝态氮、铵态氮的肥料中铵态氮含量、硝态氮含量(差减法总氮含量-铵态氮含量=硝态氮含量)(标准GB/T8572-2010《复混肥料中总氮含量的测定蒸馏后滴定法》中没有体现总氮含量-铵态氮含量=硝态氮含量,这是根据铵态氮与硝态氮性质总结研究出来的)与标准NY/T1116-2014《肥料硝态氮、铵态氮、酰胺态氮含量的测定》单独检测铵态氮含量、硝态氮含量结果无显著性差异。GB/T8572-2010检测总氮含量与SN/T0736.5-2010《进出口化肥检验方法第5部分:氮含量的测定》检测总氮含量无显著性差异。  相似文献   

13.
Two successive applications of urea and ammonium sulphate (AS) at varying intervals were given in two soils, one of which was salt affected. The nitrification and nitrate leaching after both the applications of fertilizers was studied. The nitrification of first application of AS was faster than urea on both soils. However, the nitrification rate of both fertilizers was slow in salt effected soil. The same trend of results was observed with second application of fertilizers. However, the nitrification of second application given within 6 weeks of the first application proceeded at a much faster rate than that of the first application. The amount of NO 3 - that moved down with periodic water application was related with nitrification rate and the amount of fertilizer nitrified at the time of water application.  相似文献   

14.
Non-flooded mulching cultivation (NFMC) for lowland rice, as a novel water-saving technique, has been practiced in many areas of China since the 1990s. However, the information on NFMC effects on crop production, nitrogen and water use in rice–wheat rotations is still limited. A field experiment using 15N-labeled urea was conducted to evaluate the impacts of NFMC on crop yield, fertilizer N recovery and water use efficiency in rice–wheat rotations. Plastic film mulching (PM), and wheat straw and plastic film double mulching (SPM) resulted in the same rice grain yield (7.2 t ha–1) while wheat straw mulching (SM) and no mulching (NM) led to 5 and 10% yield reduction, compared with rice under traditional flooding (TF). In the rice–wheat rotation, crop productivity in PM, SM or SPM was comparable to that in TF but greater than in NM. Weed growth and its competition with rice for nitrogen were considered the main reason that led to yield decline in NM. Compared with TF, NFMC treatments did not obviously affect fertilizer N recoveries in plant and soil in both rice and wheat seasons. The total fertilizer N recoveries in crop, weed and soil in all treatments were only 39–44% in R–W rotations, suggesting that large N losses occurred following one basal N application for each growing season. Water use efficiency, however, was 56–75% greater in NFMC treatments than in TF treatment in the R–W rotation. The results revealed that NFMC (except NM) can produce comparable rice and wheat yields and obtain similar fertilizer N recovery as TF with much less water consumption.  相似文献   

15.
Two modified urea products (urea supergranules [USG] and sulfur-coated urea [SCU]) were compared with conventional urea and ammonium sulfate as sources of nitrogen (N), applied at 58 kg N ha–1 and 116 kg N ha–1, for lowland rice grown in an alkaline soil of low organic matter and light texture (Typic Ustipsamment) having a water percolation rate of 109 mm day–1. The SCU and USG were applied at transplanting, and the whole dose of nitrogen was15N-labeled; the SCU was prepared in the laboratory and was not completely representative of commercial SCU. The SCU was broadcast and incorporated, whereas the USG was point-placed at a depth of 7–8 cm. The urea and ammonium sulfate applications were split: two-thirds was broadcast and incorporated at transplanting, and one-third was broadcast at panicle initiation. All fertilizers except the last one-third of the urea and ammonium sulfate were labeled with15N so that a fertilizer-N balance at flowering and maturity stages of the crop could be constructed and the magnitude of N loss assessed.At all harvests and N rates, rice recovered more15N from SCU than from the other sources. At maturity, the crop recovered 38 to 42% of the15N from SCU and only 23 to 31% of the15N from the conventional fertilizers, urea and ammonium sulfate, whose recovery rates were not significantly different. In contrast, less than 9% of the USG-N was utilized. Fertilizer nitrogen uptake was directly related to the yield response from the different sources. Most of the fertilizer N was taken up by the time the plants were flowering although recovery did increase up to maturity in some treatments.Analysis of the soil plus roots revealed that less than 1% of the added15N was in the mineral form. Between 20 and 30% of the15N applied as urea, SCU, and ammonium sulfate was recovered in the soil plus roots, mainly in the 0–15 cm soil layer. Only 16% of the15N applied as USG was recovered in the soil, and this15N was distributed throughout the soil profile to a depth of 70 cm, which was the lowest depth of sampling.Calculations of the15N balance showed that 46 to 50% of the urea and ammonium sulfate was unaccounted for and considered lost from the system. Only 27 to 38% of the15N applied as SCU was not recovered at maturity, but 78% of the USG application was unaccounted for. The extensive losses and poor plant recovery of USG at this site are discussed in relation to the high percolation rate, which is atypical of many ricegrowing areas.  相似文献   

16.
The potential for improved fertilizer N use efficiency was tested using a slow release N fertilizer, methylene urea (MU), on processing tomato (Lycopersicon esculentum Mill.) in a 2-year field study in the Sacramento Valley, California. Fertilizer N use efficiency of urea and a (50:50, w:w) mixture of urea and MU (uMU) was determined in direct-seeded and transplanted tomato plots with winter cover crop (CC) or winter fallow (F) using 15N labeled fertilizers. Residual MU-N was estimated from tomato N uptake in the 15N microplots, and from residual 15N uptake of wheat grown after two tomato crops. No significant differences were found in the quantity and quality of tomato yields among fertilizer and management treatments during the first year. Total yields in transplanted FuMU plots were significantly lower in the second test year, suggesting slow mineralization of MU-N in the F treatment. On average, about 40% of added fertilizer N was taken up in both fertilizer treatments, and the recovery of 15N in plant biomass and soil was 75–96 and 50–74% in seeded and transplanted blocks, respectively. In the laboratory, mineralization of MU started faster in soils with past MU use, but the enhanced mineralization did not affect the plant N uptake in the field. MU is potentially an environmentally attractive fertilizer, but without an immediate increase in yield and N use efficiency compared to conventional fertilizers, its use on row crops may not be economically feasible unless the positive environmental factors like decreased leaching of N are considered.  相似文献   

17.
The release of non-exchangeable (fixed) NH 4 + and the importance of exchangeable NH 4 + at transplanting (initial exchangeable NH 4 + ) for rice (Oryza sativa L.) growth was studied in representative lowland rice soils of the Philippines.The experiments showed that initial exchangeable ammonium behaved like fertilizer N and thus may serve as a valuable guideline for nitrogen fertilizer application rates when calculated on a hectare basis. By using the15N tracer technique it was found that nonexchangeable ammonium in soil may contribute to the nitrogen supplying capacity of lowland rice soils. Fixation and release of NH 4 + seem to be more dependent on the form of clay minerals than on clay content. In soils rich in vermiculite non-exchangeable ammonium should be considered together with other available N sources such as exchangeable ammonium for N fertilizer recommendations for lowland rice.  相似文献   

18.
A study was conducted to determine plant growth and ammonium fertilizer nitrogen uptake by rice (Oryza sativa, L.) in acid sulfate soils (Sulfic Tropaquept) as affected by soil redox conditions. Rice seedlings of acid sulfate soil-tolerant and sensitive varieties (IR 46 and IR 26, respectively) were grown in laboratory microcosms for 3 weeks in soil suspensions incubated at four separate Eh levels (+500, +250, +50, and-150 mV). Growth of both varieties decreased as soil Eh decreased. Uptake of both added15N labelled (NH4)2SO4 and native soil nitrogen also decreased with decreasing soil Eh. Percent N from fertilizer in the plant tissues increased with decreasing soil Eh. Nitrogen uptake was greater in IR 46 as compared to IR 26. A greater amount of fertilizer N and native soil N remained in the soil suspension under a highly reduced condition compared to an oxidized condition indicating that more ammonium N was utilized by the rice plants under the oxidized than the highly reduced conditions. The growth of the soil tolerant rice variety (IR 46) was more superior to that of the sensitive rice variety (IR 26) under oxidized (+500 mV) and moderately reduced (+250 to +50 mV) than highly reduced (-150 mV) conditions. Greater uptake of soil and fertilizer nitrogen was measured under the soil redox conditions in which adequate plant growth was recorded. Strongly reducing soil redox conditions adversely affected plant growth which in turn limited nitrogen uptake.  相似文献   

19.
Field studies were conducted for two years on a rapidly percolating loamy sand (Typic Ustochrept) to evaluate the effect of green manure (GM) on the yield,15N recovery from urea applied to flooded rice, the potential for ammonia loss and uptake of residual fertilizer N by succeeding crops. The GM crop ofSesbania aculeata was grownin situ and incorporated one day before transplanting rice. Urea was broadcast in 0.05 m deep floodwater, and incorporated with a harrow. Green manure significantly increased the yield and N uptake by rice and substituted for a minimum of 60 kg fertilizer N ha–1. The recovery of fertilizer N as indicated by15N recovery was higher in the GM + urea treatments. The grain yield and N uptake by succeeding wheat in the rotation was slightly higher with GM. The recovery of residual fertilizer N as indicated by the15N recovery in the second, third and fourth crops of wheat, rice and wheat was only 3, 1 and 1 per cent of the urea fertilizer applied to the preceding rice crop. Floodwater chemistry parameters showed that the combined use of the GM and 40 kg N ha–1 as urea applied at transplanting resulted in a comparatively higher potential for NH3 loss immediately after fertilizer application. The actual ammonia loss as suggested by the15N recoveries in the rice crop, however, did not appear to be appreciably larger in the GM treatment. It appeared the ammonia loss was restricted by low ammoniacal-N concentration maintained in the floodwater after 2 to 3 days of fertilizer application.  相似文献   

20.
马凯  马培华  贲艳英 《磷肥与复肥》2010,25(1):13-14,17
论述了近年国内外生产和施用的氮肥中所含铵态氮和硝态氮的比例关系。硝态氮肥产量占全球氮肥总产量:世界约14%,欧盟约40%,而我国仅占2%。消费结构比例与产量比例相近。世界最大3家氮肥生产商Yara、Terra和PCS的主要产品为硝铵尿素溶液、硝酸盐等含硝态氮产品,产量和销售量占其氮肥总量的50%以上。加快发展我国硝基肥产业,提高硝态氮肥施用量,对优化我国施肥结构、提高肥料利用率有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号