首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
聚合物薄膜厚度和极化工艺对二次谐波的影响   总被引:4,自引:1,他引:3  
使用马克条纹和实时极化方法对掺杂型聚合物( DR1/PMMA )薄膜及其极化工艺进行了深入的研究。实验表明,在一定温度下,如果聚合物薄膜预烘时间不足,则极化时二次谐波强度很弱,极化驰豫也很快;预烘时间过长对二次谐波强度变化没有明显影响。也证实薄膜厚度在相干长度下,二次谐波强度最大。  相似文献   

2.
Yeh DM  Chen CY  Lu YC  Huang CF  Yang CC 《Nanotechnology》2007,18(26):265402
We demonstrate the variations of the photoluminescence (PL) spectral peak position and intensity through the surface plasmon (SP) coupling with an InGaN/GaN quantum well (QW) by forming Ag nanostructures of different scale sizes on the QW structure with thermal annealing. By transferring an Ag thin film into a nanoisland structure, we can not only enhance the PL intensity, but also adjust the SP dispersion relation and hence red-shift the effective QW emission wavelength. Such an emission spectrum control can be realized by initially coating Ag films of different thicknesses. Although the screening process of the quantum-confined Stark effect, which can result in PL spectrum blue-shift and intensity enhancement, also contributes to the variations of the emission behaviour, it is found that the SP-QW coupling process dominates in the observed phenomena.  相似文献   

3.
Fang Z  Peng Q  Song W  Hao F  Wang J  Nordlander P  Zhu X 《Nano letters》2011,11(2):893-897
Plasmonic focusing was investigated in symmetry broken nanocorrals under linearly polarized illumination. Near-field optical measurements of the perpendicular electric field show that a single subwavelength spot size of 320 nm can be generated. The interference pattern within the corral can be controlled by changing the polarization of optical excitation and the degree of symmetry breaking. The intensity enhancement factor was investigated using finite-difference time-domain simulations and confirmed by analytical calculations taking into account the plasmon damping and multiple reflections against the corral wall.  相似文献   

4.
We demonstrate large and reversible tuning of plasmonic properties of gold nanoparticles mediated by the reversible breaking and making of linear and branched chains of gold nanoparticles adsorbed on an ultrathin (1 nm) responsive polymer film. Atomic force microscopy revealed that at pH below the isoelectric point of the polybase (extended state of the polymer chains), gold nanoparticles adsorbed on the polymer layer existed primarily as individual nanoparticles. On the other hand, at higher pH, the polymer chains transition from coil to globule (collapsed) state, resulting in the formation of linear and branched chains with strong interparticle plasmon coupling. Reversible aggregation of the nanoparticles resulted in large and reversible change in the optical properties of the metal nanostructure assemblies. In particular, we observed a large redistribution of the intensity between the individual and coupled plasmon bands and a large shift (nearly 95 nm) in the coupled plasmon band with change in pH. Large tunability of plasmonic properties of the metal nanostructure chains reported here is believed to be caused by the chain aggregates of nanoparticles and un-cross-linked state of the adsorbed polymer enabling large changes in polymer chain conformation.  相似文献   

5.
Lu Y  Liu GL  Lee LP 《Nano letters》2005,5(1):5-9
The formation of high-density silver nanoparticles and a novel method to precisely control the spacing between nanoparticles by temperature are demonstrated for a tunable surface enhanced Raman scattering substrates. The high-density nanoparticle thin film is accomplished by self-assembling through the Langmuir-Blodgett (LB) technique on a water surface and transferring the particle monolayer to a temperature-responsive polymer membrane. The temperature-responsive polymer membrane allows producing a dynamic surface enhanced Raman scattering substrate. The plasmon peak of the silver nanoparticle film red shifts up to 110 nm with increasing temperature. The high-density particle film serves as an excellent substrate for surface-enhanced Raman spectroscopy (SERS), and the scattering signal enhancement factor can be dynamically tuned by the thermally activated SERS substrate. The SERS spectra of Rhodamine 6G on a high-density silver particle film at various temperatures is characterized to demonstrate the tunable plasmon coupling between high-density nanoparticles.  相似文献   

6.
We study the scattering of a partially coherent electromagnetic beam from metallic nanocylinders and analyze the effects of plasmon resonances on the coherence and polarization properties of the optical near field. We employ the coherent-mode representation for the incident field and solve the scattering problem independently for each mode by using a boundary-integral method. Our results show that the plasmon resonances may significantly affect the coherence and polarization characteristics of the near field and that partial coherence influences the energy flow in nanocylinder arrays.  相似文献   

7.
In this study, a novel and simple diffractive spectrographic method for real-time measurements of circular dichroism (CD) is considered from a theoretical and experimental approach. A demonstrator prototype of the CD spectrograph has been developed and its performance has been compared with a commercial phase-modulation CD spectrometer. The main element of the device is a polarization holographic grating, recorded in a thin photosensitive organic film, by two interfering opposite circularly polarized beams. A peculiarity of this grating is that the amplitude of the +1 (-1) order of diffraction is proportional to the right (left) circular polarization component of the incoming beam. Here we demonstrate that the CD spectrum of a specimen can be easily evaluated from the intensities of the diffracted beams. A white light beam passing through the specimen is diffracted from the grating and the intensities of the +/-1 orders of diffraction are measured. Due to the spectral selectivity of the grating, the CD at each wavelength can be evaluated at the same time using two linear array detectors.  相似文献   

8.
Using a scanning near-field optical microscope, we visualize, in three dimensions, the electromagnetic field distribution near an isolated slit aperture in a thin gold film. At the metal-air interface and for a TM incident polarization, we confirm some recently observed results and show that the slit generates two kinds of surface waves: a slowly decaying surface plasmon polariton and a quasi-cylindrical wave that decreases more rapidly when moving away from the slit. These waves are not generated for a TE incident polarization. In a noncontact mode, we also observe how the transmitted light diverges in free space. At a small distance from the slit (< 2 microm), we find that the emerging light spreads in all directions for TM, forming an electromagnetic cloud, whereas it is concentrated above the slit for TE, forming a more directive light jet. The experimental images are in good agreement with the numerical simulations.  相似文献   

9.
We report a simple in situ synthesis for Ag nanocomposite polymer film. The extinction spectrum and the distribution of the local field intensities for Ag nanoparticles are performed by means of the dipole discrete approximation. The local field intensity is enhanced over 20 times to that of the incident light at the peak wavelength of the extinction spectrum. Nonlinear optical measurements, performed by using the Z-scan techniques, are presented afterwards. Giant enhancement of nonlinear optical responses is found for Ag/PMMA film compared with pure PMMA (polymethyl methacrylate) film. The nonlinear refractive index γ of the Ag/PMMA film is measured to be 3.708 × 10?2 cm2 GW?1. The enhanced optical properties are due to the surface plasmon resonance of Ag nanoparticles. These results are in agreement with the previous field calculations. Analyzed with respect to Stegeman figures of merit, Ag/PMMA nonlinear polymer film shows promise for practical use in ultrafast optical devices.  相似文献   

10.
We present a particular approach and the associated results allowing the nanostructuration of a thin photosensitive polymer film. This approach based on a scanning near-field optical microscopy configuration uses the field-enhancement (FE) effect, a so-called lightning-rod effect appearing at the extremity of a metallic tip when illuminated with an incident light polarized along the tip axis. The local enhancement of the electromagnetic field straight below the tip's apex is observed directly through a photoisomerization reaction, inducing the growth of a topographical nanodot characterized in situ by atomic-force microscopy using the same probe. From a survey of the literature, we first review the different experimental approaches offered to nanostructure materials by near-field optical techniques. We describe more particularly the FE effect approach. An overview of the theoretical approach of this effect is then given before presenting some experimental results so as theoretical results using the finite-element method. These results show the influence on the nanostructuration of the polymer of a few experimental parameters such as the polarization state, the illumination mode and the tip's geometry. Finally, the potentiality of this technique for some applications in the field of lithography and high-density data storage is shown via the fabrication of nano-patterns.  相似文献   

11.
A surface plasmon polariton is a collective oscillation of free electrons at a metal–dielectric interface. As wave phenomena, surface plasmon polaritons can be focused with the use of an appropriate excitation geometry of metal structures. In the adiabatic approximation, we demonstrate a possibility to control nanoscale short pulse superfocusing based on generation of a radially polarized surface plasmon polariton mode of a conical metal needle in view of wave reflection. The results of numerical simulations of femtosecond pulse propagation along a nanoneedle are discussed. The space–time evolution of a pulse for the near field strongly depends on a linear chirp of an initial laser pulse, which can partially compensate wave dispersion. The field distribution is calculated for different metals, chirp parameters, cone opening angles and propagation distances. The electric field near a sharp tip is described as a field of a fictitious time-dependent electric dipole located at the tip apex.  相似文献   

12.
By harnessing photoswitchable intersystem crossing (ISC) in spiropyran (SP) molecules, active control of plasmon‐enhanced fluorescence in the hybrid systems of SP molecules and plasmonic nanostructures is achieved. Specifically, SP‐derived merocyanine (MC) molecules formed by photochemical ring‐opening reaction display efficient ISC due to their zwitterionic character. In contrast, ISC in quinoidal MC molecules formed by thermal ring‐opening reaction is negligible. The high ISC rate can improve fluorescence quantum yield of the plasmon‐modified spontaneous emission, only when the plasmonic electromagnetic field enhancement is sufficiently high. Along this line, extensive photomodulation of fluorescence is demonstrated by switching the ISC in MC molecules at Au nanoparticle aggregates, where strongly enhanced plasmonic hot spots exist. The ISC‐mediated plasmon‐enhanced fluorescence represents a new approach toward controlling the spontaneous emission of fluorophores near plasmonic nanostructures, which expands the applications of active molecular plasmonics in information processing, biosensing, and bioimaging.  相似文献   

13.
Ahn Y  Dunning J  Park J 《Nano letters》2005,5(7):1367-1370
We report optical scanning measurements on photocurrent in individual Si nanowire field effect transistors (SiNW FETs). We observe increases in the conductance of more than 2 orders of magnitude and a large conductance polarization anisotropy of 0.8, making our SiNW FETs a polarization-sensitive, high-resolution light detector. In addition, scanning images of photocurrent at various biases reveal the local energy-band profile especially near the electrode contacts. The magnitude and polarity of the photocurrent vary depending on the gate bias, a behavior that can be explained using band flattening and a Schottky-barrier-type change. This technique is a powerful tool for studying photosensitive nanoscale devices.  相似文献   

14.
Near-field photochemical imaging of noble metal nanostructures   总被引:1,自引:0,他引:1  
The sub-diffraction imaging of the optical near-field in nanostructures, based on a photochemical technique, is reported. A photosensitive azobenzene-dye polymer is spin coated onto lithographic structures and is subsequently irradiated with laser light. Photoinduced mass transport creates topographic modifications at the polymer film surface that are then measured with atomic force microscopy (AFM). The AFM images correlate with rigorous theoretical calculations of the near-field intensities for a range of different nanostructures and illumination polarizations. This approach is a first step toward additional methods for resolving confined optical near fields, which can augment scanning probe methodologies for high spatial resolution of optical near fields.  相似文献   

15.
We present an experimental analysis of the plasmonic scattering properties of gold nanoparticles controllably placed nanometers away from a gold metal film. We show that the spectral response of this system results from the interplay between the localized plasmon resonance of the nanoparticle and the surface plasmon polaritons of the gold film, as previously predicted by theoretical studies. In addition, we report that the metal film induces a polarization to the single nanoparticle light scattering, resulting in a doughnut-shaped point spread function when imaged in the far-field. Both the spectral response and the polarization effects are highly sensitive to the nanoparticle-film separation distance. Such a system shows promise in potential biometrology and diagnostic devices.  相似文献   

16.
We report a novel nanomanufacturing technique that incorporates patterned arrays built entirely from Fe?O? nanoparticles into a flexible and transparent polymer film. First, the nanoparticles are patterned using the enormous magnetic field gradients at the surface of commercial disk drive media, and then the resulting architecture is transferred to the surface of a polymer film by spin-coating and peeling. Since the particles are immobilized by the field gradients during the spin-coating process, the patterned array is preserved after peeling. To demonstrate the potential of this technology, we fabricate a 5 mm diameter all-nanoparticle diffraction grating capable of producing a white-light optical spectrum. We also demonstrate several extensions to this technology, where, by adding an external magnetic field during assembly, we create both periodic variations in topography, as well as a nanocomposite with two vertically and horizontally separated nanoparticle layers. As this technique leverages the nanometer resolution inherent in current magnetic recording technology, strong potential exists for low-cost nanomanufacturing of optical and electronic devices from a variety of nanomaterials with ~10 nm resolution.  相似文献   

17.
Characterization of near-field optical probes   总被引:1,自引:0,他引:1  
Radiation and collection characteristics of four different near-field optical-fiber probes, namely, three uncoated probes and an aluminum-coated small-aperture probe, are investigated and compared. Their radiation properties are characterized by observation of light-induced topography changes in a photosensitive film illuminated with the probes, and it is confirmed that the radiated optical field is unambiguously confined only for the coated probe. Near-field optical imaging of a standing evanescent-wave pattern is used to compare the detection characteristics of the probes, and it is concluded that, for the imaging of optical-field intensity distributions containing predominantly evanescent-wave components, a sharp uncoated tip is the probe of choice. Complementary results obtained with optical phase-conjugation experiments with the uncoated probes are discussed in relation to the probe characterization.  相似文献   

18.
The influence of annealing time and of the silver over polymer ratio on the optical properties of the silver nanoparticles embedded in a poly(vinyl alcohol) matrix has been analyzed by spectroscopic ellipsometry in the visible/near-infrared spectral domains. The complex refractive index shows a localized absorption near 420 nm which can be attributed to localized surface plasmons. An atomic force microscopy topographic analysis shows that the particles were nearly spherical with an average size less than 20 nm, as confirmed by optical transmission measurements with polarized light. The size of the particles and their number respectively decreased and increased as the annealing time of the film increased, yielding a plasmon absorption band whose intensity is correlated to the silver nanoparticles density, estimated from their nearest-neighbour distance.  相似文献   

19.
Optical interference is a powerful technique for monitoring surface topography or refractive index changes in a thin film layer. Reflectance spectroscopy provides label-free biosensing capability by monitoring small variations in interference signature resulting from optical path length changes from surface-adsorbed biomolecules. Spectral reflectance data can be acquired either by broad wavelength illumination and spectroscopy at a single point, thus necessitating scanning, or by varying the wavelength of illumination and imaging the reflected intensity allowing for acquisition of a spectral image of a large field of view simultaneously. In imaging modalities, intensity fluctuations of the illuminating light source couple into the detected signal, increasing the noise in measured surface profiles. This article introduces a simple technique for eliminating the effects of illumination light power fluctuations by fabricating on-substrate self-reference regions to measure and normalize for the incident intensity, simplifying the overall platform for reflection or transmission-based imaging biosensors. Experimental results demonstrate that the sensitivity performance using self-referencing is equivalent or better than an optimized system with an external reference.  相似文献   

20.
In this paper, we describe experimental and modeling results that illucidate the nature of coupling between surface plasmon polaritons in a thin silver film with the molecular resonance of a zinc phthalocyanine dye film. This coupling leads to several phenomena not generally observed when plasmons are coupled to transparent materials. The increased absorption coefficient near a molecular resonance leads to a discontinuity in the refractive index, which causes branching of the plasmon resonance condition and the appearance of two peaks in the p-polarized reflectance spectrum. A gap exists between these peaks in the region of the spectrum associated with the molecular resonance and reflects quenching of the plasmon wave due to violation of the resonance condition. A second observation is the appearance of a peak in the s-polarized reflection spectra. The initial position of this peak corresponds to where the refractive index of the adsorbate achieves its largest value, which occurs at wavelengths just slightly larger than the maximum in the molecular resonance. Although this peak initially appears to be nondispersive, both experimental data and optical modeling indicate that increasing the film thickness shifts the peak position to longer wavelengths, which implies that this peak is not associated with the molecular resonance but, rather, is dispersive in nature. Indeed, modeling shows that this peak is due to a guided mode in the film, which appears in these conditions due to the abnormally high refractive index of the film near the absorbance maximum. Results also show that, with increasing film thickness, numerous additional guided modes appear and move throughout the visible spectrum for both s- and p-polarized light. Notably, these guided modes are also quenched near the location of the molecular resonance. The quenching of both the plasmon resonance and the guided modes can be explained by a large decrease in the in-plane wave propagation length that occurs near the molecular resonance, which is a direct result of the film's large absorption coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号