首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Atmospheric mercury is predominantly present in the gaseous elemental form (Hg0). However, anthropogenic emissions (e.g., incineration, fossil fuel combustion) emit and natural processes create particulate-phase mercury(Hg(p)) and divalent reactive gas-phase mercury (RGM). RGM species (e.g., HgCl2, HgBr2) are water-soluble and have much shorter residence times in the atmosphere than Hg0 due to their higher removal rates through wet and dry deposition mechanisms. Manual and automated annular denuder methodologies, to provide high-resolution (1-2 h) ambient RGM measurements, were developed and evaluated. Following collection of RGM onto KCl-coated quartz annular denuders, RGM was thermally decomposed and quantified as Hg0. Laboratory and field evaluations of the denuders found the RGM collection efficiency to be >94% and mean collocated precision to be <15%. Method detection limits for sampling durations ranging from 1 to 12 h were 6.2-0.5 pg m(-3), respectively. As part of this research, the authors observed that methods to measure Hg(p) had a significant positive artifact when RGM coexists with Hg(p). This artifact was eliminated if a KCl-coated annular denuder preceded the filter. This new atmospheric mercury speciation methodology has dramatically enhanced our ability to investigate the mechanisms of transformation and deposition of mercury in the atmosphere.  相似文献   

5.
6.
Data illustrating the performance characteristics of a proton transfer reaction-mass spectrometer (PTR-MS) under both laboratory and field conditions are presented. Under laboratory conditions, we demonstrate that PTR-MS measures (within 10%) a 2.6 ppbv concentration of gaseous dimethyl sulfide. Using a stepwise dilution of a gaseous isoprene standard, we demonstrate the linearity of the response of PTR-MS across 3 orders of magnitude of mixing ratios, from 100 ppbv to less than 100 pptv. By combining this data set with that of its monosubstituted 13C isotopic analogue, we demonstrate the ability of the instrumentto reliably measure concentrations as low as approximately 50 pptv and to detect concentrations at significantly lower levels. We conclude our laboratory characterization by investigating the components of the instrument noise signal (drift, mean, and range) and develop an expression (noise statistic) that reliably predicts the instrumental noise associated with any signal across a wide range of masses. In the field, we deployed a PTR-MS at a clean-air coastal site and an urban kerbside monitoring station to demonstrate the measurement of atmospheric dimethyl sulfide and benzene concentrations, respectively. At both sites, we were able to monitor diurnal variations in concentrations at unprecedented temporal resolutions (<5 min between successive measurements). We then demonstrate how the noise statistic can be applied to enable real fluctuations in atmospheric VOC concentrations to be reliably distinguished from instrument noise. We conclude by demonstrating how PTR-MS can be used to measure real-time VOC emission rate changes from vegetation in response to external forcing by examining the effect varying photon-flux density has upon emissions of isoprene from a Sitka spruce tree.  相似文献   

7.
8.
9.
为了进一步提高城市的空气质量,满足人们对环境的要求,需要采取有效的方式进行空气监测.对空气进行监测后,会得到一系列的监测数据.只有对这些数据进行有效地分析和处理,才能制定合理的环境管理策略.本文主要对环境空气监测数据的分析与处理方法进行相应探讨,旨在进一步提高环境空气的监测质量,为人们营造良好的城市环境.  相似文献   

10.
PM2.5 samples were collected from June to December 2005 in Potsdam, New York and analyzed for polar organic compounds by GC/MS. The major compounds that were identified in the samples included 2-methyltetrols (2-methylthreitol and 2-methylerythritol), levoglucosan, cispinonic acid, and mannitol. 2-Methyltetrols were quantified during the analysis. A seasonal variation for these two diastereoisomers was observed, with the highest concentrations occurring during the summer and the lowest concentrations occurring during the winter. OC/EC analyses of these samples were also performed. The variation of the carbon contribution of 2-methyltetrols to OC was found to follow the same pattern as the concentration variation of 2-methyltetrols. During summer, the period of high photochemical activity, the maximum carbon contribution of 2-methyltetrols to OC was 2.8%. The observation of high 2-methyltetrol concentrations during the summer indicates isoprene is a significant summertime source of secondary organic aerosol in this rural area in the northeastern United States.  相似文献   

11.
Few reports have characterized mutagenic compounds in respirable airborne particles (<2.5 micrometers in diameter; PM2.5) collected at different sites on a regional scale (hundreds of km). Previously, we reported differences in the human (h1A1v2) cell mutagenicity of whole and fractionated organic extracts of PM2.5 samples collected in Boston, MA, Rochester, NY, and Quabbin Reservoir, a rural site in western MA. Herein we describe the analysis of mutagens and other organic compounds in these samples. Gas chromatography-mass spectrometry (GC-MS) was used to quantify approximately 150 organic compounds, including 31 known human cell mutagens. Molecular weight (MW) 226-302 amu PAHs were the most important mutagens identified: cyclopenta[cd]pyrene accounted for 1-2% of the measured mutagenicity of the samples, MW 252 PAHs accounted for 4-6%, MW 276-278 PAHs accounted for 2-5%, and MW 302 PAHs accounted for 2-3%. 6H-benzo-[cd]pyren-6-one, a PAH ketone, accounted for 3-5% of the mutagenicity. The same compounds accounted for similar portions of the total attributed mutagenicity in each sample. Mutagen levels were similar in the Boston and Rochester samples, and both were significantly higher than the Quabbin sample. This may explain whythe mutagenicities of the Boston and Rochester samples were higher than the Quabbin sample. The levels of mutagens found in semipolar fractions, however, could not explain why the mutagenicity of semipolar fractions was 2-fold higher in the Rochester sample than in the Boston sample. Known mutagens accounted for only 16-26% of the total mutagenicity of the unfractionated extracts, and only approximately 20% of the mutagenicity of the nonpolar and semipolar fractions. The remaining mutagenicity is likely attributable to other, as-yet unknown, semipolar and polar mutagens, or to interactions among chemical constituents of the samples. These findings are consistent with similar studies performed on airborne particles from Los Angeles and Washington, DC, thus indicating that PAHs, PAH-ketones, and as-yet unidentified polar organic compounds are widely distributed airborne human cell mutagens.  相似文献   

12.
Source apportionment of ambient volatile organic compounds in Beijing   总被引:16,自引:0,他引:16  
The ambient air quality standard for ozone is frequently exceeded in Beijing in summer and autumn. Source apportionments of volatile organic compounds (VOCs), which are precursors of ground-level ozone formation, can be helpful to the further study of tropospheric ozone formation. In this study, ambient concentrations of VOCs were continuously measured with a time resolution of 30 min in August 2005 in Beijing. By using positive matrix factorization (PMF), eight sources for the selected VOC species were extracted. Gasoline-related emissions (the combination of gasoline exhaust and gas vapor), petrochemicals, and liquefied petroleum gas (LPG) contributed 52, 20, and 11%, respectively, to total ambient VOCs. VOC emissions from natural gas (5%), painting (5%), diesel vehicles (3%), and biogenic emissions (2%) were also identified. The gasoline-related, petrochemical, and biogenic sources were estimated to be the major contributors to ozone formation potentials in Beijing.  相似文献   

13.
14.
Current Carbon Capture and Storage (CCS) technologies focus on large, stationary sources that produce approximately 50% of global CO2 emissions. We propose an industrial technology that captures CO2 directly from ambient air to target the remaining emissions. First, a wet scrubbing technique absorbs CO2 into a sodium hydroxide solution. The resultant carbonate is transferred from sodium ions to calcium ions via causticization. The captured CO2 is released from the calcium carbonate through thermal calcination in a modified kiln. The energy consumption is calculated as 350 kJ/mol of CO2 captured. It is dominated by the thermal energy demand of the kiln and the mechanical power required for air movement. The low concentration of CO2 in air requires a throughput of 3 million cubic meters of air per ton of CO2 removed, which could result in significant water losses. Electricity consumption in the process results in CO2 emissions and the use of coal power would significantly reduce to net amount captured. The thermodynamic efficiency of this process is low but comparable to other "end of pipe" capture technologies. As another carbon mitigation technology, air capture could allow for the continued use of liquid hydrocarbon fuels in the transportation sector.  相似文献   

15.
The use of photonic band gap (PBG) titania (inverse opal) for the photocatalytic degradation of an organic chemical in air is demonstrated in this study using 1,2-dichlorobenzene. A photonic band gap in the mid-to-high ultraviolet (UV) wavelength range (280-380 nm), normally associated with the optimal photocatalytic activity of anatase titania, is expected to increase the quantum efficiency for the catalyst. To achieve this band gap, porous structures with alternating air and titania spaces with a periodicity of about 150 nm is required. A thin film of porous photonic titania was synthesized in-situ on a quartz glass rod with a sol-gel technique using polystyrene micro-spheres as templates. Scanning electron microscopy images revealed a pore size of about 100 nm and a periodicity of approximately 150 nm, necessary for the desired band gap. X-ray diffraction studies of the coating showed the presence of anatase titania, which is known to exhibit photoactivity. The photocatalytic activity of the coated titania film was verified by measuring the degradation of 1,2-dichlorobenzene vapor in a semi-batch mode in the presence of UV radiation (mid-high UV wavelength) PBG titania showed 248% higher photonic efficiency compared to commercially available P25 titania catalyst. Transmission spectra from the thin films showed high absorbance in the UV range, suggesting a band gap in the region of UV illumination.  相似文献   

16.
Fine particulate matter emitted during wood combustion is known to contribute a significant fraction of the total fine aerosol concentration in the atmosphere of both urban and rural areas. In the present study, additional organic compounds that may act as wood smoke tracers in the atmosphere are sought. Polar organic compounds in wood smoke fine particulate matter are converted to their trimethylsilyl derivatives and analyzed by gas chromatography/mass spectrometry. Silylation enables the detection of n-alkanols, plant sterols, and a number of compounds derived from wood lignin that have not previously been reported in wood smoke samples, as well as levoglucosan and related sugar anhydrides formed during the combustion of cellulose. The concentrations of these compounds measured in source emissions are compared to the concentrations in atmospheric fine particle samples collected at a rural background site and at two urban sites in California's San Joaquin Valley. On the basis of this analysis, the sugar anhydrides galactosan and mannosan can be listed along with levoglucosan as being among the most abundant organic compounds detected in all samples.  相似文献   

17.
A sampling and analytical method for measuring ethylene oxide (EO) in ambient air was developed and evaluated. The method is based on the use of evacuated canisters and gas chromatography-mass spectrometry (GC-MS). The objectives of this work were to characterize the performance of the method with respect to the following: (1) stability/recovery of ethylene oxide in a canister over a 15-day holding time; (2) detection capability; and (3) measurement of EO in an ambient air matrix. Both electropolished and silica-lined stainless steel canisters were evaluated in this study. The method evaluation involved both laboratory and field tests. The recovery of the EO was evaluated both on an absolute basis and relative to a spiked internal standard of toluene. EO spiked at levels of 2 ppbv and 20 ppbv was found to be stable for holding times of up to 15 days at 25 degrees C in both a humidified nitrogen matrix and in ambient air. The detection limit of the method was found to be 0.25 ppbv using EPA's traditional approach of seven replicate analyses of a low-level standard and 0.20 ppbv using a probability-based approach. EO recoveries in the laboratory stability study generally were 100 +/- 25%, and did not vary by canister type, nor did the EO recoveries decrease with holding time. Field studies demonstrated that the method is capable of detecting EO (as well as benzene and toluene) in an ambient air matrix.  相似文献   

18.
Abstract

Color changes of potato, carrot and pumpkin during air drying were the subject of this study. Air convective drying was done at 70°C and 1.5 m/s. Color of the material undergoing drying was measured with chromameter and expressed in the CIE system with chromaticity coordinates x and y, and luminance Y. It has been found that drying affects color of investigated vegetables. Luminance increased and chromaticity coordinates moved toward whiteness until a specific water content was reached. Thereafter, luminance decreased and x and y coordinates moved toward the color of the raw material. It is suggested that changes of color of drying materials were due to removal of water, substitution of water by air and deformation of surface (shrinkage). At the end of drying a concentration effect seems to predominate. Rehydrated material had a different color than that of raw one. The difference was depended on the kind of material investigated and its reconstitution properties. Nevertheless the color changes irreversibly due to the changes of surface and internal structure of the material caused by drying and rehydration processes.  相似文献   

19.
Feruloylated lysophospholipids (FLPs) were firstly synthesized from phosphatidylcholine (PC) and ethyl ferulate (EF) using lipase-catalysed interesterification in selected solvents at controlled water content. Kinds of lipases and single solvents were screened. Novozym 435 and toluene were found to be the suitable biocatalyst and solvent, respectively. Then tert-butanol, n-butanol, chloroform, isopropanol, acetone and DMSO were respectively added into toluene in order to increase conversion of products. The results showed that toluene/chloroform could significantly increase the conversion and the optimal combination of toluene and chloroform was 90:10 (v/v). The optimal conditions generated for FLPs production were a substrate molar ratio of 5:1 (PC/EF), a PC’s hydrolytic time of 1.5 h, an enzyme load of 60 mg/ml, a solvent dosage of 5 ml and a molecular sieves concentration (4 Å) of 100 mg/ml. Under these conditions, 40.51% of EF can be converted to FLPs, which were identified by TLC and HPLC–MS.  相似文献   

20.
Trace metals are ubiquitous in urban ambient air, with mass concentrations in the range of a few microg/m3 down to less than 100 pg/m3. To measure such low concentrations represents a challenge for chemical and physical analysis. In this study, ambient aerosol was collected in Zürich (Switzerland) in 1-h intervals and three size fractions (aerodynamic diameters 0.1-1 microm, 1-2.5 microm, and 2.5-10 microm), using a three-stage rotating drum impactor (RDI). The samples were analyzed by energy-dispersive Synchrotron radiation X-ray fluorescence spectrometry (SR-XRF) to obtain size-segregated hourly elemental aerosol mass concentrations for Cr, Mn, Fe, Cu, Zn, Br, and Pb, along with S, Cl, and Ca under the selected experimental conditions. The high sensitivity of SR-XRF allowed for detection limits of <50 pg/m3 for most of the above elements, with a net analysis time of only 15 s per sample. The data obtained with this technique illustrate that there is a considerable gain of relevant information when time resolution for measurements is increased from 1 day to 1 h. The individual size fractions of a specific element may show significantly different short-term patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号