首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
采用葡萄糖为碳源,通过固相合成法制备了掺碳的LiFePO4正极材料,并对样品的性能进行了研究分析.结果表明,少量的碳掺杂并未改变LiFePO4的晶体结构但显著改善了其电化学性能,LiFePO4/C样品的粒度较小粒径分布均匀,0.1 C首次放电比容量为141.9 mAh/g,循环50次后容量下降11.2 mAh/g,以1 C倍率首次放电比容量为126.5 mAh/g,循环50次后容量保持率为87.2%.  相似文献   

2.
以V2O5、NH4H2PO4、Li2CO3、(CH3COO)2Mn.4H2O原料,以葡萄糖和抗坏血酸为复合还原剂及碳源,通过常温还原-低温烧结法制备锂离子电池正极材料Li3V(2-2x/3)Mnx(PO4)3/C(x=0,0.03,0.06,0.09,0.12)。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电测试对该正极材料的物相、结构、微观形貌以及电化学性能进行了表征。结果表明,Mn2+的掺杂对磷酸钒锂电化学性能的发挥影响很大,其中当锰掺杂量x=0.09时材料表现出最佳的电化学性能,0.2 C倍率条件下首次放电比容量131 mAh/g,循环50次后容量衰减仅为4.02%。  相似文献   

3.
采用高温固相法合成不同镁元素掺杂量的尖晶石型锰酸锂。X射线衍射(XRD)表征结果表明,样品都具有尖晶石结构,无杂质相。扫描电镜(SEM)表征结果显示,掺杂前后所有样品的颗粒大小和形貌差别不大。对样品进行电化学性能测试,结果表明:当LiMgxMn2-xO4中镁的掺杂量x=0.09时,样品具有较佳的电化学性能,首次放电比容量为110.5 mA·h/g,在55 ℃ 1 C充放电循环50次后容量保持率为91.22%。  相似文献   

4.
以FePO4和Li2CO3为原料,以PEG为碳源,采用碳热还原法制备LiFePO4/C复合正极材料。利用XRD、SEM对所得样品的晶体结构和表面形貌进行表征。采用恒流充放电循环测试考察样品的电化学性能。首先研究了不同PEG掺入量对材料结构和电化学性能的影响,发现加入PEG后仍得到结晶完好的LiFePO4晶体,PEG的加入并没有影响LiFePO4的晶体结构。随着PEG掺入量的增加,材料的放电容量先增大后减小;当PEG掺入量为1 mol时,样品的电化学容量最高,0.2C倍率下可达155.9mAh/g。当锂源用量过量4%时,材料的电化学性能最好,其0.2C、1.0C和5.0C时的放电比容量可分别达156.6、143.5和110.3mAh/g,且表现出良好的循环稳定性。  相似文献   

5.
以Li3PO4和Fe(3PO4).28H2O为原料,采用固相法成功制备了锂离子电池正极材料LiFePO4,并讨论了Li3PO4用量对材料的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电测试等手段对最终产物的物相、形貌和电化学性能进行了表征。结果表明,按计量比制备的LiFePO4样品具有较好的电化学性能,以0.1、0.5、1和5 C(1C=150 mA/g)的倍率进行充放电,首次放电比容量分别为135.6、123.8、116.2和56.5 mAh/g。磷酸锂过量8%制备的样品具有较好的高倍率性能,5C时放电比容量为80.3 mAh/g;而磷酸锂过量30%的样品则具有很好的小倍率放电比容量,0.1C时放电比容量为151.1 mAh/g。  相似文献   

6.
采用"熔融浸渍法"合成了Mg和F共掺杂的不同温度下的锂离子电池正极材料Li Mn2-xMgxO3.97F0.03(x=0.05,0.1);煅烧温度为700,750和800°C。通过XRD对样品进行测试,样品为单一尖晶石结构的物相;并用SEM测试,对样品进行了形貌研究。用所制备的材料作为正极材料组装了模拟锂离子电池;在室温下进行恒电流充-放电性能测试,测试条件为3.3~4.3 V和0.2mA/cm2电流密度。随着材料制备温度的升高,电池的初始放电容量有逐渐增加的趋势,但充放电循环的容量损失也逐渐增加;氟掺杂量一定,镁掺杂量较多时,对应温度下煅烧的样品的结晶程度较好,样品的电化学性能也较好。在800下°C样品Li Mn1.9Mg0.1O3.97F0.03初始容量高达108 mAh/g,60次充放电循环后,其容量保持率高达81%,具有优良的循环稳定性能。  相似文献   

7.
采用两步固相法反应制备LiFePO4/C和LiFePO3.92F0.08/C。采用XRD对样品的结构进行分析。结果表明LiFePO3.92F0.08/C仍然具有橄榄石结构,但是相比于未掺杂的磷酸铁锂其具有更好的倍率性能和循环性能。LiFePO3.92F0.08/C在不同倍率下的放电比容量分别为141.7mAh/g(0.2 C)、113.2 mAh/g(1 C)、70.4 mAh/g(10 C)。尤其是在1 C倍率下循环30圈后,放电比容量仍达115.6 mAh/g。研究显示,F掺杂能够提高电子电导率进而显著改善其电化学性能。  相似文献   

8.
《山东陶瓷》2021,44(3)
用高温煅烧法制备Al、Zr双元素共掺杂钴酸锂(LiCoO_2)正极材料,对双掺杂样品进行XRD、SEM和电化学性能表征,分析结果表明:Al、Zr均匀的掺杂在LiCoO_2晶格中,有效的提高了LiCoO_2的倍率性能,在常温(25℃),3.0-4.5V,以0.2C充电,分别以0.2C、0.5C、1.0C和2.0C放电,Al、Zr双掺杂LiCoO2正极材料的放电比容量分别为189.3mAh/g、188.7mAh/g、187.7mAh/g和186.5mAh/g,首次效率达到97.4%。从Al、Zr掺杂LiCoO_2的电化学性能可以看出,Al、Zr掺杂处理更有利于Li~+的脱嵌,提高了LiCoO_2的倍率性能并保持良好的循环稳定性。  相似文献   

9.
Mg2+、Zr4+离子掺杂对Li4Ti5O12电化学性能的影响   总被引:1,自引:0,他引:1  
以固相反应法合成了尖晶石型Li4Ti5O12电极材料,进行了金属离子掺杂以提高其导电性及综合性能,以适应用于大电流充放电的目的。采用XRD、室温恒流充放电循环、交流阻抗和循环伏安等测试手段,考察了A位掺杂Mg(Li4-xMgxTi5O12,x=0.15),B位掺杂Zr(Li4ZrxTi5-xO12,x=0.15)对Li4Ti5O12结构和电化学性能的影响。结果表明:掺杂少量的Mg2+、Zr4+未引起材料结构的变化,明显降低了Li4Ti5O12电荷转移阻抗,使导电性得到有效提高。0.1 C放电倍率下放电,未掺杂及掺杂Mg2+、Zr4+的Li4Ti5O12首次放电容量分别为159.8、144.9、161.2mAh/g,循环40次后,容量分别保持为113.8、130.6、133.6 mAh/g。与未掺杂的Li4Ti5O12相比,掺杂后的电极材料极化减小、循环容量及稳定性提高。  相似文献   

10.
以Mg(CH3 COO)2·4H2O,CO(CH3 COO)2-4H2O作为Mg2+和CO2+的掺杂源,以乙醇为溶剂,C6H15 NO3作为络合剂,CH3,COOLi·2H2O和Ti(OC4 H9)4作为原料,利用溶胶-凝胶法制备复合掺杂2种金属的Li4-xMg-Ti5-yCoyO12材料,并对其进行了X射线衍射(XRD)、扫描电镜(SEM)、电化学阻抗(EIS)、循环伏安(CV)、激光粒度等测试.结果表明,该法制备的样品具有良好的尖晶石型晶体结构以及较优的充放电性能.当x=0.02,y = 0.05时,在1.0~-2.5 V内,以0.1 C倍率循环时,Li3.98Mg0.O2Ti4.95 Co0.05O12样品首次放电比容量高达165.0 mAh/g,比未掺杂Mg2+和Co2+时(139.9 mAh/g)提高了17.9%.经过多次不同倍率的充放电循环后,0.1 C的放电比容量仍保持为143.4 mAh/g,且充放电效率始终维持在99%以上,具备良好的电化学性能.  相似文献   

11.
以醋酸锰、氢氧化锂为原料,以柠檬酸为络合剂,n(柠檬酸):n(锂)=1:1,采用柠檬酸辅助溶胶-凝胶法制备了富锂尖晶石Li1+xMn2O4 (x=0,0.02,0.05,0.07),采用TG-DTA、XRD、SEM分别对前驱体和目标材料进行了表征,采用恒流充放电及循环伏安(CV)测试对材料进行了电化学性能表征,考察了不...  相似文献   

12.
以廉价的Fe2O3为铁源,(NH4)H2PO4为磷源,Li2CO3为锂源,分别以乙炔黑、葡萄糖、PEG6000为还原剂和碳源,采用碳热还原法制备了LiFePO4/C复合材料。X射线衍射(XRD)分析表明用三种碳源都合成了橄榄石结构的LiFePO4。扫描电子显微镜(SEM)分析显示,以PEG6000为碳源合成的LiFePO4/C复合材料粒径较小,较均匀,且有较好的碳包覆。以充放电曲线、循环性能和交流阻抗等测试研究了材料的电化学性能,结果表明,以PEG6000为碳源合成的材料的电化学性能较好,0.1C、1C下首次放点比容量分别为144.7 mAh/g、132 mAh/g。  相似文献   

13.
以Mg(CH3 COO)2·4H2O,CO(CH3 COO)2-4H2O作为Mg2+和CO2+的掺杂源,以乙醇为溶剂,C6H15 NO3作为络合剂,CH3,COOLi·2H2O和Ti(OC4 H9)4作为原料,利用溶胶-凝胶法制备复合掺杂2种金属的Li4-xMg-Ti5-yCoyO12材料,并对其进行了X射线衍射(XR...  相似文献   

14.
王蕊  杨瑞峰 《化学工程师》2010,24(2):56-58,62
本文以蔗糖为碳源,采用固相法合成了锂离子电池LiNixFe1-xPO4(x=0、0.05、0.1、0.2和0.3)正极材料,通过XRD和SEM等表征所合成的产物为多孔炭和LiFePO4相以恒电流充放电和电化学阻抗谱研究了材料的电化学性能,结果LiNi0.1Fe0.9PO4的性能最佳,其粒径大小在500~1000nm左右,在2C的充放电条件下,其放电比容量为70.3mAh·g-1,15次循环后容量保持率达90%。  相似文献   

15.
本文以葡萄糖为碳源,采用原位复合法制备锂离子电池复合负极材料Li4Ti5O12@C,同时探讨了不同碳包覆量对Li4Ti5O12的影响。通过X-射线衍射和扫描电子显微镜对合成出的材料结构及表面形貌进行表征,采用恒电流充放电和电化学阻抗等技术对其进行电化学性能测试。结果表明:碳包覆量为3 %的Li4Ti5O12颗粒均匀且电化学性能最好。在0.5 C下,首次放电比容量为185.9 mAh/g,循环50次后,其放电比容量仍为161.5 mAh/g。在2.0 C下,首次放电比容量为99.9 mAh/g,材料表现出优良的电化学性能。  相似文献   

16.
采用柠檬酸(C6H8O7·H2O)作碳源制备Li4Ti5O12/C复合材料,利用X射线粉末衍射仪(XRD)和扫描电子显微镜(SEM)研究了柠檬酸添加量对材料结构和形貌的影响。研究结果表明:添加不同量的柠檬酸,所制备的样品均为尖晶石型结构。随着柠檬酸添加量的增加,材料颗粒粒径逐渐增大,分布更加均匀,团聚也逐渐加剧。在1.0~2.5V的电压范围内,对样品进行恒流充放电测试,柠檬酸(C6H8O7·H2O)的添加量为6%时,制备的Li4Ti5O12/C复合材料具有最佳的电化学性能,0.2C和1C的放电比容量分别为171.3m Ah/g和165.4m Ah/g。  相似文献   

17.
采用溶胶-凝胶法合成了复合离子掺杂的尖晶石型锰酸锂Li1.02Mn1.92Al0.02Cr0.02Mg0.02O4-xFx(x=0,0.06)正极材料,并用XRD、CV、EIS和充放电测试等研究了其结构和电化学性能。结果表明,F与金属离子(Li、Al、Cr、Mg)的复合掺杂不仅提高了材料的比容量,还增加了尖晶石结构的稳定性,改善了材料的循环性能和可逆性能;充放电测试结果表明,Li1.02Mn1.92Al0.02Cr0.02Mg0.02O3.94F0.06具有优越的循环性能,常温下,以1/3C充放电的首次放电容量及50个循环后的容量保持率分别为117.9 mAh/g,96.9%。  相似文献   

18.
翁韶迎  张俊 《安徽化工》2012,38(5):21-23
以FeCl3.6H2O为原料,通过先水解,后在空气中煅烧制备了粒径约100 nm的Fe2O3负极材料,并研究其电化学性能。此工艺简单,所得材料的放电比容量高,循环性能优异。在50 mAg-1电流密度下,首次放电比容量为1667.0 mAh g-1,第二次放电比容量为1161.0mAh g-(1占首次的70%),循环50次后,仍保持459.7 mAh g-1的放电比容量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号