首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The fate of labeled linoleic, α-linolenic, and higher homologs of α-linolenic acid administered to the yellow clam,Mesodesma mactroides, was investigated. It was found that the clam incorporated the acids dissolved in sea water and converted 18∶2 (n−6) into 20∶2 (n−6) and 18∶3 (n−3) into 18∶4 (n−3) and 20∶3 (n−3). The addition of casein hydrolysate to the sea water increased the desaturation capacity of the clam and allowed the conversion of 18∶2 (n−6) into 18∶3 (n−6) to be demonstrated. An enhanced desaturation of 18∶3 (n−3) into 18∶4 (n−3) was also demonstrated. After 12 hr administration of the acid, no radioactivity was found in arachidonic, 20∶5 (n−3), or 22∶6 (n−3). Feeding the clams a culture ofPhaeodactylum tricornutum previously incubated with 1-14C-α-linolenic acid demonstrated that all the homologs of the α-linolenic series were found in the clam without any important changes. Six hour administration of labeled linolenic acid resulted in the incorporation of the acid into diglycerides and phospholipids. Member of the carrera del Investigador Cientifico of the Consejo Nacional de Investigaciones Cientificas y Tecnicas  相似文献   

2.
Octadecapentaenoic acid (all-cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18∶5n−3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata), and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 μM [U-14C] 18∶5n−3 methyl ester or [U-14C]18∶4n−3 (octadecatetraenoic acid; all-cis δ6,9,12,15–18∶4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3 , and also with 25 μM unlabeled 18∶5n−3 or 18∶4n−3. Cells were also incubated with 25 μM trans δ2, all-cis δ6,9,12,15–18∶5 (2-trans 18∶5n−3) produced by alkaline isomerization of 18∶5n−3 chemically synthesized from docosahexaenoic acid (all-cis δ4,7,10,13,16,19–22∶6). Radioisotope and mass analyses of total fatty acids extracted from cells incubated with 18∶5n−3 were consistent with this fatty acid being rapidly metabolized to 18∶4n−3 which was then elongated and further desaturated to eicosatetraenoic acid (all-cis δ8,11,14,17,19–20∶4) and eicosapentaenoic acid (all-cis δ5,8,11,14,17–20∶5). Similar mass increases of 18∶4n−3 and its elongation and further desaturation products occurred in cells incubated with 18∶5n−3 or 2-trans 18∶5n−3. We conclude that 18∶5n−3 is readily converted biochemically to 18∶4n−3 via a 2-trans 18∶5n−3 intermediate generated by a Δ3, Δ2-enoyl-CoA-iso-merase acting on 18∶5n−3. Thus, 2-trans 18∶5n−3 is implicated as a common intermediate in the β-oxidation of both 18∶5n−3 and 18∶4n−3.  相似文献   

3.
When the sewage fungus Leptomitus lacteus was grown in liquid culture aerobically and then transferred to medium containing long-chain fatty acids, it produced a number of oxygenated fatty acids. From linoleic acid (18∶2n−6), the major metabolite produced was R-8-hydroxy-9Z,12Z-octadecadienoic acid (8R-HODE), with additional quantities of 8,11-di-HODE, 11,16-di-HODE, and 11,17-di-HODE. Other fatty acid derivatives identified included 7-HODE, 10-HODE, and 13-hydroxy-octadecamonoenoic acid. Arachidonic acid (20∶4n−6) was metabolized primarily to 18- and and 19-hydroxy-eicosatetraenoic acids (18- and 19-HETE) also as R enantiomers, along with smaller quantities of 17-HETE, 9-HETE, 14,15-dihydroxyeicosatrienoic acid and 11,12,19-trihydroxy-eicosatrienoic acid. The oxygenated products of long-chain fatty acids, in particular the biosynthesis of 8R-HODE, a compound classified as a precocious sporulation inducer, were similar to those produced by an unrelated fungal species in the Ascomycota, the take-all fungus Gaeumannomyces graminis. As in G. graminis, the biotransformation of linoleate to 8R-HODE was not significantly inhibited by exposure of the organism to CO. This indicated that the enzyme responsible for 8R-HODE biosynthesis in Leptomitus could be similar to that of G. graminis; yet we did not detect 7,8-di-HODE as a product of 18∶2n−6 metabolism as in G. graminis. CO did inhibit the biosynthesis of 14,15-di-HETE, 18-HETE, and 19-HETE in L. lacteus, which suggested the involvement of a cytochrome P450-type monooxygenase. The biosynthesis of 8R-HODE from 18∶2n−6 was found to occur in certain cell lysates, specifically in low speed (15,000×g) supernatant, following cell disruption.  相似文献   

4.
Linoleate is oxygenated by manganese-lipoxygenase (Mn-LO) to 11S-hydroperoxylinoleic acid and 13R-hydroperoxyoctadeca-9Z,11E-dienoic acid, whereas linoleate diol synthase (LDS) converts linoleate sequentially to 8R-hydroperoxylinoleate, through an 8-dioxygenase by insertion of molecular oxygen, and to 7S,8S-dihydroxylinoleate, through a hydroperoxide isomerase by intramolecular oxygen transfer. We have used liquid chromatography-mass spectrometry (LC-MS) with an ion trap mass spectrometer to study the MSn mass spectra of the main metabolites of oleic, linoleic, α-linolenic and γ-linolenic acids, which are formed by Mn-LO and by LDS. The enzymes were purified from the culture broth (Mn-LO) and mycelium (LDS) of the fungus Gaeumannomyces graminis. MS3 analysis of hydroperoxides and MS2 analysis of dihydroxy- and monohydroxy metabolites yielded many fragments with information on the position of oxygenated carbons. Mn-LO oxygenated C-11 and C-13 of 18∶2n−6, 18∶3n−3, and 18∶3n−6 in a ratio of ∼1∶1–3 at high substrate concentrations. 8-Hydroxy-9(10)expoxystearate was identified as a novel metabolite of LDS and oleic acid by LC-MS and by gas chromatography-MS. We conclude that LC-MS with MSn is a convenient tool for detection and identification of hydroperoxy fatty acids and other metabolites of these enzymes.  相似文献   

5.
The seed oil from a genetically transformed canola (Brassica napus) containing 43% (w/w) of γ-linolenic acid (G, 18∶3n−6), 22% linoleic acid (L, 18∶2n−6), and 16% oleic acid (O, 18∶1n−9) was evaluated. In this high γ-linolenic acid canola oil (HGCO), the predominant 18∶3n−6-containing triacylglycerol (TG) molecular species were GGL (23%), GLO (20%), and GGG (11%). In the total TG, approximately 75% of the 18∶3n−6 was located at the sn-1,3 positions, while only 34% of linoleic acid was at the sn-1,3 positions. The GGL molecular species of HGCO contained approximately equal amounts of GLG and GGL positional isomers, while the GLO molecular species had 95% GOL and 5% GLO isomers. The general characteristics and the tocopherol and phytosterol contents were mostly similar between HGCO and nontransformed canola oil. No detectable amounts of amino acids and nucleotides were observed in the HGCO.  相似文献   

6.
G. Cherian  J. S. Sim 《Lipids》1992,27(9):706-710
Egg yolk was enriched with α-linolenic acid (18∶3n−3) by feeding laying hens diets containing flax, canola or soybean seeds. Fertilized eggs were incubated and the fatty acid composition of whole body, liver, plasma, brain and the cholesterol content of plasma and liver tissue of the hatched chicks were studied. Eggs enriched with 18∶2n−6 fatty acids by feeding hens diets containing sunflower seeds were used as the controls. Feeding flax enriched (P<0.05) egg yolk and the developing progeny with 18∶3n−3, 20∶5n−3, 22∶5n−3 and 22∶6n−3. Feeding sunflower seeds resulted in an increase (P<0.05) of 18∶2n−6, 20∶4n−6, 22∶4n−6 and 22∶5n−6. The predominant polyunsaturated fatty acid of the brain was docosahexaenoic acid (22∶6n−3) which was higher (P<0.05) in the flax and canola fed group. The cholesterol content of the liver tissue was lower (P<0.05) in chicks hatched from hens fed flax seeds. This study indicates that 18∶3n−3 and 18∶2n−6 in the maternal diet are potent modulators of long-chain polyunsaturated n−3 or n−6 fatty acid and of cholesterol content in the developing progeny.  相似文献   

7.
Kramer JK  Blackadar CB  Zhou J 《Lipids》2002,37(8):823-835
Milkfat is a complex mixture of many diverse FA, some of which have demonstrated health benefits including anticancer properties. Attempts are under way to enrich milkfats with long-chain n−3 PUFA and CLA. It has been recommended that the analysis of these milkfats requires gas chromatography (GC) equipped with long, highly polar capillary columns. However, many analyses have been reported using CARBOWAXTM type (polyethylene glycol) capillary columns, such as SUPELCOWAX 10, even though the separation characteristics of many of the FA and their isomers present in milkfats have not been described in detail. This includes the isomers of CLA, cis- and trans-octadecenoic acid (18∶1), linoleic acid (18∶2n−6), and linolenic acid (18∶3n−3), and the long-chain PUFA. On the other hand, the resolution of these FA and their isomers has been more fully described using the highly polar capillary columns, such as CP Sil 88 and SP2560 because of the improved resolution obtained using these polar columns. The present study was undertaken to characterize the separation of these FA present in milkfats using a 60-m SUPELCOWAX 10 column, to compare the results to those from a 100-m CP Sil 88 column, and to determine if these two columns could possibly serve to complement each other for the analysis of total milkfat. The advantages of the SUPELCOWAX 10 column were a better resolution of the short-chain saturated from their monounsaturated FA (MUFA) analogs, and a complete separation of the α-linolenic (18∶3n−3) and eicosadecenoic acid (20∶1) isomers. It also provided an alternative elution order of the linoleic (18∶2n−6), 18∶3n−3 and γ-linolenic (18∶3n−6) acid isomers. On the other hand, the CP Sil 88 column provided a better resolution of the CLA isomers, MUFA, the isolated cis and trans MUFA fractions, the PUFA, and many the 18∶2n−6 and 18∶3n−3 isomers. A complete analysis of milk lipids using the CP Sil 88 column required the prior separation of total FAME using silver ion-TLC. The results of the present study confirm that the 100-m highly polar capillary GC columns are mandatory for the analysis of milk lipids, and at best, the 60 m SUPELCOWAX 10 capillary column serves as a complementary GC column to provide different separations in certain regions based on its intermediate polarity.  相似文献   

8.
The effects of dietary cis and trans α-linolenic acid (18∶3n−3) on the FA composition of plasma, red blood cell, and liver phospholipids were studied in newborn piglets. Animals were fed for 14 d with one of three diets: a control diet (group A) containing cis 18∶3n−3 at a level of 2.0% of total FA, a diet (group B) in which a part of the 18∶3n−3 acid was isomerized (1.3% of cis 18∶3n−3 and 0.7% of trans 18∶3n−3), or a diet (group C) with 2.0% cis 18∶3n−3 and 0.7% trans 18∶3n−3. Feeding animals with diets containing trans 18∶3n−3 resulted in the presence of trans isomers of 18∶3n−3, trans isomers of EPA, and trans isomers of DHA in phospholipids; however, the level of total trans n−3 PUFA in tissues was less than 0.3% of total tissue FA. In group B, the reduction of dietary amounts of cis 18∶3n−3 was associated with a decrease in individual and total cis n−3 PUFA. In contrast, in group C there was no decrease in tissue n−3 PUFA despite the increased dietary level of trans 18∶3n−3. These results suggest that the isomerization of a part of dietary n−3 PUFA, leading to the reduction of their levels in the diet, could induce a decrease in n−3 PUFA in phospholipids. The physiological effects of trans PUFA are not known and should be considered in future studies.  相似文献   

9.
14C1-Linolenic acid was incorporated into lipids of hearts, livers, and carcasses of male rats. We studied the influence of diet composition on extent and distribution of radioactivity. A CHOW diet, a purified, essential fatty acid (EFA)-deficient diet, a purified control diet, and EFA-deficient diets with four fatty acid supplements were used. Supplements of 18∶2n−6, 20∶4n−6, 18∶3n−3, and 22∶6n−3 were given as single doses. Radioactivities in liver phosphatidyl ethanolamines (PE), phosphatidyl cholines, and neutral lipids were measured. The distribution of radioactivity among the fatty acids in liver phospholipids was determined. Rats on CHOW diet incorporated far less radioactivity than any other group into lipids of hearts and livers. Most of the activity in livers was recovered as 20∶5n−3 and 22∶6n−3 in all rats. In EFA-deficient rats, the radioactivity in 22∶6n−3 of liver PE was still increasing 36 hr after14C1-linolenic acid had been administered. The n−6 supplements (18∶2n−6 and 20∶4n−6) seemed to reduce the conversion of 20∶4n−3 to 20∶5n−3 (desaturation), whereas the n−3 supplements (18∶3n−3 and 22∶6n−3) reduced the conversion of 20∶5n−3 to 22∶5n−3 (elongation). Formation of 22∶6n−3 may be controlled by 22∶6n−3 itself at the elongation of 20∶5n−3 to 22∶5n−3.  相似文献   

10.
Carballeira NM  Cruz H  Hillyer GV 《Lipids》2003,38(7):769-772
The FA composition of Fasciola hepatica 12 kDA purified native FA-binding protein (nFh12), a candidate vaccine against fascioliasis, is described. The FA chain lengths ranged between 12 and 24 carbons. The principal FA were 16∶0 18∶1n−9, 18∶0, 20∶4n−6, and 20∶1n−9. The acids 16∶0, 18∶1n−9, and 18∶0 comprised over half the FA that were bound to the whole FA-binding protein. Small amounts (1.0–2.8%) of isoanteiso methyl-branched FA also were characterized. Forty-one different FA were identified in extracts of the adult flukes, with the three most abundant FA also being 16∶0, 18∶1n−9, and 18∶0. A similar proportion of saturated vs. unsaturated FA was observed between the whole extract from F. hepatica and the nFh12 protein. However, the n−3/n−6 ratio of PUFA was significantly different, being 1.2 in the whole extract vs. 9.6 in the nFh12 protein complex. The nFh12 protein binds more n−5, n−6, and n−7 PUFA and less n−3 and n−9 PUFA than the whole extract. In addition, cholesterol (56%), sitosterol (36%), and fucosterol (8%) also were bound to the nFh12 protein complex.  相似文献   

11.
Following the suckling period, four groups of male four-week-old spontaneously hypertensive rats (SHR) were fed semisynthetic diets with 14% (by weight) of either sunflower seed oil [46% 18∶2(n−6); linoleic acid (LA)-rich], linseed oil [62.5% 18∶3(n−3)+12.9% 18∶2(n−6); α-linolenic acid (LNA)-rich], evening primrose oil [9.2% 18∶3(n−6)+71% 18∶2(n−6); γ-linolenic acid (LNA)-rich] or hydrogenated palm kernel fat [1.5% 18∶2(n−6); polyunsaturated fatty acid (PUFA)-deficient], respectively, up to an age of 18 wk. All diets enriched with PUFA provoked an attenuation of hypertension development. The effect was lowest in the LA-rich group and highest in the γ-LNA-rich group. Differences in fatty acid composition of renal phospholipids between groups reflect the fatty acids present in the respective dietary fats. Renomedullary production of PGF was significantly reduced in α-LNA-rich and slightly diminished in γ-LNA-rich fed rats. Aortic formation of 6-keto-PGF and TXB2 was increased in animals fed the γ-LNA-rich diet. Thus, the attenuation of hypertension development cannot be explained only by changes in prostanoid formation. Other mechanisms possibly involved should be pursued.  相似文献   

12.
Ruyter B  Thomassen MS 《Lipids》1999,34(11):1167-1176
Oxidation, esterification, desaturation, and elongation of [1-14C]18∶2n−6 and [1-14C]18∶3n−3 were studied using hepatocytes from Atlantic salmon (Salmo salar I.) maintained on diets deficient in n−3 and n−6 polyunsaturated fatty acids (PUFA) or supplemented with n−3 PUFA. For both dietary groups, radioactivity from 18∶3n−3 was incoporated into lipid fractions two to three times faster than from 18∶2n−6, and essential fatty acids (FFA) deficiency doubled the incorporation. Oxidation to CO2 was very low and was independent of substrate or diet, whereas oxidation to acid-soluble products was stimulated by EFA deficiency. Products from 18∶2n−6 were mainly 18∶3n−6, 20∶3n−6, and 20∶4n−6, with minor amounts of 20∶2n−6 and 22∶5n−6. Products from 18∶3n−3 were mainly 18∶4n−3, 20∶5n−3, and 22∶6n−3, with small amounts of 20∶3n−3. The percentage of 22∶6n−3 in the polar lipid fraction of EFA-deficient hepatocytes was fourfold higher than in n−3 PUFA-supplemented cells. This correlated well with our other results obtained after abdominal injection of [1-14C]18∶3n−3 and [1-14C]18∶2n−6. In hepatocytes incubated with [4,5-3H]-22∶6n−3, 20∶5n−3 was the main product. This retrocon-version was increased by EFA deficiency, as was peroxisomal β-oxidation activity. This study shows that 18∶2n−6 and 18∶3n−3 can be elongated and desaturated in Atlantic salmon liver, and that this conversion and the activity of retroconversion of very long chain PUFA is markedly enhanced by FFA deficiency.  相似文献   

13.
This study has utilized radiolabeled analogues of arachidonic acid to study the substrate specificity of elongation of long-chain polyunsaturated fatty acids. Human umbilical vein endothelial cells were incubated for 2–72 hr in medium supplemented with 0.9–2.6 μM [14C]fatty acid, and cellular glycerolipids were analyzed by gas-liquid chromatography with radioactivity detection. Elongation of naturally occurring C20 polyunsaturated fatty acids occurred with eicosapentaenoate (20∶5(n−3))>Mead acid (20∶3(n−9))>arachidonate (20∶4(n−6)). Chain length markedly influenced the extent of elongation of 5,8,11,14-tetraenoates (18∶4>19∶4>20∶4>21∶4); effects of initial double bond position were also observed (6,9,12,15–20∶4>4,7,10,13–20∶4. Neither 5,8,14- nor 5,11,14–20∶3 was elongated to the extent of 5,8,11–20∶3. Differences between polyunsaturated fatty acids were observed both in the initial rates and in the maximal percentages of elongation, suggesting that the content of cellular C20 and C22 fatty acids may represent a balance between chain elongation and retroconversion. Umbilical vein endothelial cells do not exhibit significant desaturation of either 22∶4(n−6) or 22∶5(n−3). By contrast, incubation with 5,8,11,14-[14C]18∶4(n−4) resulted in formation of both [14C]20∶5(n−4) and [14C]22∶5(n−4). The respective time courses for the appearances of [14C]22∶5(n−4) and [14C]20∶5(n−5) suggests Δ6 desaturation of [14C]22∶4(n−4) rather than Δ4 desaturation of [14C]20∶4(n−4).  相似文献   

14.
The influence of individual conjugated linoleic acid (CLA) isomers on the Δ6 desaturation of linoleic and α-linolenic acids and on the Δ9 desaturation of stearic acid was investigated in vitro, using rat liver microsomes. The Δ6 desaturation of 18∶2n−6 was decreased from 23 to 38% when the ratio of 9cis,11trans-18∶2 to 18∶2n−6 increased from 0.5 to 2. The compound 10trans,12cis-18∶2 exhibited a similar effect only at the highest concentration. The Δ6 desaturation of α-linolenic acid was slightly affected by the presence of CLA isomers. The sole isomer to induce an inhibitory effect on the Δ9 desaturation of stearic acid was 10trans,12cis-18∶2.  相似文献   

15.
Atlantic salmon were fed fish meal-based diets supplemented with either 100% fish oil (FO) or 100% rapeseed oil (RO) from an initial weight of 85 g to a final average weight of 280 g. The effects of these diets on the capacity of Atlantic salmon hepatocytes to elogate, desaturate, and esterify [1-14C]18∶1n−9 and the immediate substrates for the Δ5 desaturase, [1-14C]20∶3 n−6 and [1-14C]20∶4n−3, were investigated. Radiolabeled 18∶1n−9 was mainly esterified into cellular TAG, whereas the more polyunsaturated FA, [1-14C]20∶3n−6 and [1-14C]20∶4n−3, were primarily esterified into cellular PL. More of the elongation product, [1-14C]20∶1n−9, was produced from 18∶1n−9 and more of the desaturation and elongation products, 22∶5n−6 and 22∶6n−3, were produced from [1-14C]20∶3n−6 and [1-14C]20∶4n−3, respectively, in RO hepatocytes than in FO hepatocytes. Further, we studied whether increased addition of [1-14C]18∶1n−9 to the hepatocyte culture media would affect the capacity of hepatocytes to oxidize 18∶1n−9 to acid-soluble products and CO2. An increase in exogenous concentration of 18∶1n−9 from 7 to 100 μM resulted in a nearly twofold increase in the amount of 18∶1n−9 that was oxidized. The conversion of 20∶4n−3 and 20∶3n−6 to the longer-chain 22∶6n−3 and 22∶5n−6 was enhanced by RO feeding in Atlantic salmon hepatocytes. The increased capacity of RO hepatocytes to produce 22∶6n−3 was, however, not enought to achieve the levels found in FO hepatocytes. Our data further showed that there were no differences in the hepatocyte FA oxidation capacity and the lipid deposition of carcass and liver between the two groups.  相似文献   

16.
The fresh-water green alga Parietochloris incisa is the richest plant source of the PUFA arachidonic acid (20∶4n−6, AA). To elucidate the biosynthesis of AA in this alga we labeled cultures of P. incisa with radioactive precursors. Pulse chase labeling with acetate resulted in its incorporation via the de novo biosynthesis pathway of FA. However, labeled acetate was also utilized for the elongation of C16 and C18 PUFA. Labeling with [1-14C]oleic acid has shown that the first steps of the lipid-linked FA desaturations utilize cytoplasmic lipids. PC and diacylglyceryltrimethylhomoserine are the major lipids involved as acyl carriers for the Δ12 and Δ6 desaturations of oleic acid, leading sequentially to linoleic and γ-linolenic acids. The latter is released from its lipid carrier and elongated to 20∶3n−6, which is reincorporated primarily into PF and PC and finally desaturated to AA. Galactolipids, mostly monogalctosyldiacylglycerol (MGDG), serve as substrates for the chloroplastic Δ12 desaturase and, apparently, the ω3 desaturation, common to higher plants and many green algae. The predominant sequence desaturates the 18∶1/16∶0 molecular species of MGDG stepwise to the 18∶3n−3/16∶3n−3 molecular species similar to the prokaryotic pathway of higher plants and green algae.  相似文献   

17.
The effect of dietary α-linolenic acid (18∶3n−3) and its ratio to linoleic acid (18∶2n−6) on platelet and plasma phospholipid (PL) fatty acid patterns and prostanoid production were studied in normolipidemic men. The study consisted of two 42-d phases. Each was divided into a 6-d pre-experimental period, during which a mixed fat diet was fed, and two 18-d experimental periods, during which a mixture of sunflower and olive oil [low 18∶3n−3 content, high 18∶2/18∶3 ratio (LO-HI diet)], soybean oil (intermediate 18∶3n−3 content, intermediate 18∶2/18∶3 ratio), canola oil (intermediate 18∶3n−3 content, low 18∶2/18∶3 ratio) and a mixture of sunflower, olive and flax oil [high 18∶3n−3 content, low 18∶2/18∶3 ratio (HI-LO diet)] provided 77% of the fat (26% of the energy) in the diet. The 18∶3n−3 content and the 18∶2/18∶3 ratio of the experimental diets were: 0.8%, 27.4; 6.5%, 6.9; 6.6%, 3.0; and 13.4%, 2.7, respectively. There were appreciable differences in the fatty acid composition of platelet and plasma PLs. Nevertheless, 18∶1n−9, 18∶2n−6 and 18∶3n−3 levels in PL reflected the fatty acid composition of the diets, although very little 18∶3n−3 was incorporated into PL. Both the level of 18∶3n−3 in the diet and the 18∶2/18∶3 ratio were important in influencing the levels of longer chain n−3 fatty acid, especially 20∶5n−3, in platelet and plasma PL. Production of 6-keto-PGF was significantly (P<0.05) higher following the HI-LO diet than the LO-HI diet although dietary fat source had no effect on bleeding time or thromboxane B2 production. The present study showed that both the level of 18∶3n−3 in the diet and its ratio to 18∶2n−6 were important in influencing long-chain n−3 fatty acid levels in platelet and plasma PL and that prostanoid production coincided with the diet-induced differences in PL fatty acid patterns.  相似文献   

18.
Linoleic (18∶2n−6) and α-linolenic acids (18∶3n−3) have many important physiological functions including immunomodulation. We tested how immunization influences the metabolism of 18∶2n−6 and 18∶3n−3 in the neck muscle of pigs. At 35 d old, pigs received either an intramuscular neck injection containing hen egg white lysozyme (HEWL), killed Mycobacterium tuberculosis, and Freund’s complete adjuvant (immunized) or PBS (control). At 49 d old, immunized pigs received a booster injection of HFWI and Freund’s incomplete adjuvant, and the control pigs received PBS into the neck. At 56 d old, all pigs received an intradermal injection of Mycobacterium bovis into the hind leg to induce a delayed-type hypersensitivity (DTH) reaction. At 57 d old, immunized pigs had a twofold increase in serum haptoglobin, a 10-fold increase in antibodies to HEWL, and the skinfold at the DTH reaction site was 10 times thicker than the controls. Both 18∶2n−6 and 18∶3n−3 (% composition) were approximately 25% lower in muscle IG, 40% lower in FFA, 50% lower in phospholipids, but not different in cholesteryl esters of the neck muscle of immunized pigs. The antigens in this model induce an increased response in the innate (haptoglobin), humoral (antibodies), and cellular (DTH) immune systems as well as a preferential decrease of 18∶2n−6 and 18∶3n−3 in the inflamed neck muscle. It appears that 18∶2n−6 and 18∶3n−3 are preferentially metabolized (possibly β-oxidized) in response to antigens.  相似文献   

19.
Ves-Losada A  Maté SM  Brenner RR 《Lipids》2001,36(3):273-282
Liver nuclear incorporation of stearic (18∶0), linoleic (18∶2n−6), and arachidonic (20∶4n−6) acids was studied by incubation in vitro of the [1-14C] fatty acids with nuclei, with or without the cytosol fraction at different times. The [1-14C] fatty acids were incorporated into the nuclei as free fatty acids in the following order: 18∶0>20∶4n−6≫18∶2n−6, and esterified into nuclear lipids by an acyl-CoA pathway. All [1-14C] fatty acids were esterified mainly to phospholipids and triacylglycerols and in a minor proportion to diacylglycerols. Only [1-14C] 18∶2n−6-CoA was incorporated into cholesterol esters. The incorporation was not modified by cytosol addition. The incorporation of 20∶4n−6 into nuclear phosphatidylcholine (PC) pools was also studied by incubation of liver nuclei in vitro with [1-14C]20∶4n−6-CoA, and nuclear labeled PC molecular species were determined. From the 15 PC nuclear molecular species determined, five were labeled with [1-14C]20∶4n−6-CoA: 18∶0–20∶4, 16∶0–20∶4, 18∶1–20∶4, 18∶2–20∶4, and 20∶4–20∶4. The highest specific radioactivity was found in 20∶4–20∶4 PC, which is a minor species. In conclusion, liver cell nuclei possess the necessary enzymes to incorporate exogenous saturated and unsaturated fatty acids into lipids by an acyl-CoA pathway, showing specificity for each fatty acid. Liver cell nuclei also utilize exogenous 20∶4n−6-CoA to synthesize the major molecular species of PC with 20∶4n−6 at the sn-2 position. However, the most actively synthesized is 20∶4–20∶4 PC, which is a quantitatively minor component. The labeling pattern of 20∶4–20∶4 PC would indicate that this molecular species is synthesized mainly by the de novo pathway.  相似文献   

20.
Ishihara K  Komatsu W  Saito H  Shinohara K 《Lipids》2002,37(5):481-486
The effects of dietary stearidonic acid (18∶4n−3) on inflammatory mediator release in whole blood and splenocytes was investigated in Balb/c mice, and the effects were compared with those of two other n−3 PUFA: α-linolenic acid (18∶3n−3) and EPA (20∶5n−3). TAG mixtures containing 10% of 18∶4n−3, 18∶3n−3, or 20∶5n−3 as the respective sole n−3 PUFA were enzymatically synthesized. Diets containing synthesized TAG mixtures were fed to Balb/c mice for 3 wk. The release of prostaglandin E2 (PGE2) and tumor necrosis factor (TNF) were measured in whole blood and splenocytes stimulated with lipopolysaccharide. In whole blood, the production of INF was suppressed by all dietary n−3 PUFA (18∶3n−3, 18∶4n−3, and 20∶5n−3) as compared with the control diet, which contained TAG prepared from safflower oil. PGE2 production was not significantly changed. Differences among the n−3 PUFA (18∶3n−3), 18∶4n−3, and 20∶5n−3) were not observed. In splenocytes, PGE2 production was suppressed by dietary n−3 PUFA, but TNF production was not. GC analysis of plasma and splenocyte FA profiles showed an increase in the levels of 20∶4n−3, 20∶5n−3, and 22∶6n−3 in mice fed the diet containing 18∶4n−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号