首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.  相似文献   

2.
A mathematical representation has been developed, and computed results are presented describing the spreading and solidification of droplets impacting onto a solid substrate. This impingement is of major practical interest in plasma spraying and spray forming operations. Experiments in which molten metal drops were made to impinge onto a substrate were used to test the model. High-speed videography was used to record the spreading process, which typically took a few milliseconds for the experimental conditions employed. A comparison was made of the theoretical predictions with the experimental measurements; these were found to be in very good agreement, suggesting that the theoretical treatment of the model is sound. These calculations permit the prediction of the time and extent of the spreading process, the solidification rate, and the effect of process parameters, such as droplet size, droplet velocity, superheat, and material properties, provided that a value of the thermal contact coefficient is known. The most important finding of the modeling work is that for large droplets (∼5-mm diameter) with low impinging velocities (∼2 m/s), spreading and solidification appear to take place at comparable rates; in contrast, for small (∼100−μm diameter) particles impacting at a high velocity (∼100 m/s), the time scale for spreading appears to be shorter than the time scale for solidification (within the range of parameters of this study.) J.J. VALENCIA, formerly Postdoctoral Researcher with UCSB This article is based on a presentation made in the symposium “Spray Processing Fundamentals: Coating and Deposition” presented as part of the 1990 TMS Fall Meeting, October 9, 1990, in Detroit, MI, under the auspices of the TMS Synthesis and Analysis in Materials Processing Committee.  相似文献   

3.
A method has been proposed to pulsate current in gas metal arc welding (GMAW) to achieve a specific type of desirable and repeatable metal transfer mode, i.e., one drop per pulse (ODPP) mode. This method uses a peak current lower than the transition current to prevent accidental detachment and takes advantage of the downward momentum of the droplet oscillation to enhance the detachment. A numerical model with advanced computational fluid dynamics (CFD) techniques, such as a two-step projection method, volume of fluid (VOF) method, and continuum surface force (CSF) model, was used to carry out the simulation for the metal transfer process. The Gauss-type current density distribution was assumed as the boundary condition for the calculation of the electromagnetic force. The calculations were conducted to demonstrate the effectiveness of the proposed method in achieving the desired metal transfer process in comparison with conventional pulsed current GMAW. Also, the critical conditions for effective use of this proposed method were identified by the numerical simulation. Comparison showed good agreement between calculation and experimental results.  相似文献   

4.
Metal–slag emulsion is an important process to enhance the reaction rate between the two phases; thus, it improves the heat and mass transfer of the process significantly. Various experimental studies have been carried out, and some system specific relations have been proposed by various investigators. A unified, theoretical study is lacking to model this complex phenomenon. Therefore, two simple models based on fundamental laws for metal droplet velocity (both ascending and descending) and bubble velocity, as well as its position at any instant of time, have been proposed. Analytical solutions have been obtained for the developed equations. Analytical solutions have been verified for the droplet velocity, traveling time, and size distribution in slag phase by performing high-temperature experiments in a Pb-salt system and comparing the obtained data with theory. The proposed model has also been verified with published experimental data for various liquid systems with a wide range of physical properties. A good agreement has been found between the analytical solution and the experimental and published data in all cases.  相似文献   

5.
A model of simultaneous heat and mass transfer has been constructed to describe vaporization of liquid metal droplets in arc heated gas streams. The major assumptions of the model include 1) plug flow, 2) negligible pressure drop, 3) no droplet-droplet interactions, 4) negligible gas radiation, natural convection, thermal diffusion, diffusion-thermo transport and axial conduction and diffusion, and 5) no interfacial discontinuities in temperature or concentration. The latter assumption is discussed in detail in a separate appendix. The analysis is limited to binary, nonreacting gas mixtures. The mathematical formulation results in five nonlinear, first order differential equations with temperature and compositional dependent properties. The model is applied to the vaporization of sodium and magnesium droplets injected into arc heated argon flowing in a cylindrical reactor. The effect of parameters such as initial droplet radius, reactor diameter, and liquid metal flowrate on the reactor length required to achieve a specified degree of vaporization is calculated.  相似文献   

6.
This article describes a theoretical investigation on the arc parameters and metal transfer in gas metal arc welding (GMAW) of mild steel using argon and helium shielding gases. Major differences in the predicted arc parameters were determined to be due to large differences in thermophysical properties. Various findings from the study include that an arc cannot be struck in a pure helium atmosphere without the assistance of metal vapor, that a strong electromagnetic cathode force affects the fluid flow and heat transfer in the helium arc, providing a possible explanation for the experimentally observed globular transfer mode and that the tapering of the electrode in an argon arc is caused by electron condensation on the side of the electrode. Formerly Graduate Student, Massachusetts Institute of Technology  相似文献   

7.
Numerical analysis of metal transfer in gas metal arc welding   总被引:1,自引:0,他引:1  
The present article describes a numerical procedure to simulate metal transfer and the model will be used to analyze the transport processes involved in gas metal arc welding (GMAW). Advanced Computational fluid dynamics (CFD) techniques used in this model include a two-step projection method for solving the incompressible fluid flow; a volume of fluid (VOF) method for capturing free surface; and a continuum surface force (CSF) model for calculating surface tension. The electromagnetic force due to the welding current is estimated by assuming several different types of current density distribution on the free surface of the drop. The simulations based on the assumption of Gaussian current density distribution show that the transition from globular to spray transfer mode occurs over a narrow current range and the size of detached drops is nonuniform in this transition zone. The analysis of the calculation results gives a better understanding of this physical procedure. Comparisons between calculated results and experimental results are presented. It is found that the results computed from the Gaussian assumption agree well with those observed in experiments.  相似文献   

8.
A model of heat transfer and fluid flow during the sequential impingement of two liquid Al-33 wt pct Cu droplets on a 304 stainless steel substrate has been developed on the FLUENT 6.3.16 platform. The model was validated using the Jackson–Hunt theory (K.A. Jackson and J.D. Hunt: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 1129–42). During the impingement of the second droplet on the first splat, transient air gap formation and remelting of solidified region of the first splat occurred.  相似文献   

9.
Cable-type welding wire (CWW)CO2 welding is an innovative process arc welding with high quality,high efficiency and energy saving,in which CWW is used as consumable electrode.The CWW is composed of seven wires with a diameter of 1.2 mm.One is in the center,while others uniformly distribute around it.The diameter of twisted wire is up to 3.6 mm,which can increase the deposition rate significantly.With continual wire-feeding and melting of CWW,the formed rotating arc improved welding quality obviously.The arc behavior and droplet transfer were ob-served by the electrical signal waveforms and corresponding synchronous images,based on the high speed digital camera and electrical signal system.The results showed that the shape of welding arc changed from bell arc to beam arc with the increase of welding parameter.The droplet transfer mode changed from repelled transfer,globular transfer to projected transfer in turn.Droplet transfer frequency increased from 18.17 Hz to 119.05 Hz,while the droplet diameter decreased from 1.5 times to 0.3 times of the CWW diameter.  相似文献   

10.
《Acta Metallurgica》1989,37(2):429-443
Net or near net shape products can be manufactured by technologies involving solidification processing, metal forming, paniculate processing, and droplet consolidation. One example of droplet consolidation is spray deposition in the Ospreytm mode. In this process, a stream of liquid metal is atomized by an inert gas to form a spray of molten droplets; these are accelerated towards a substrate where they impinge and consolidate. An integral model for the Ospreytm spray deposition process has been developed using established theoretical principles. Mathematical models describe the interconnected processes of droplet-gas interactions in flight and subsequent droplet consolidation on the substrate. The models predict droplet velocity and temperature as a function of flight distance, the extent of droplet solidification on arrival at the substrate, and temperature distribution in the consolidated material during deposition. This approach demonstrates the utility of modeling studies in order to establish quantitative guidelines for optimization of the process in terms of the evolution of microstructure in droplet consolidation.  相似文献   

11.
There are two kinds of existing processes for hot metal desulfurization in CSC. One is the injection process in torpedo car, the other is the impelling process in transfer ladle. Lime-based fluxes have been used for both processes. The former was introduced to CSC in 1982. The latter was adopted by CSC and DSC respectively in 2004 and 2010. This paper comprises a theoretical analysis on lime-based flux as desulfurizing agent and an experimental evaluation on impelling process of Kambara (or Kikai) Reactor with a water model and a hot model established in 2001. The comparison of recent mass-production performance for both processes in steelmaking shop has also been included.  相似文献   

12.
Temperature and velocity fields, and weld pool geometry during gas metal arc welding (GMAW) of commercially pure aluminum were predicted by solving equations of conservation of mass, energy and momentum in a three-dimensional transient model. Influence of welding speed was studied. In order to validate the model, welding experiments were conducted under the similar conditions. The calculated geometry of the weld pool were in good agreement with the corresponding experimental results. It was found that an increase in the welding speed results in a decrease peak temperature and maximum velocity in the weld pool, weld pool dimensions and width of the heat-affected zone (HAZ). Dimensionless analyses were employed to understand the importance of heat transfer by convection and the roles of various driving forces in the weld pool. According to dimensionless analyses droplet driving force strongly affected fluid flow in the weld pool.  相似文献   

13.
We numerically study impingement and solidification of a molten hollow droplet onto a surface during thermal spray coating process. In the impingement model transient flow during the hollow droplet impact, subsequent spreading and solidification, and air entrapment are considered using the volume of fluid surface tracking method coupled with the solidification model within a one-domain continuum formulation. A phenomenon of counter liquid jetting is observed which causes large air entrapment and porous deposited layer. This will have potential prospects in improving the thermal insulation properties of surfaces in turbine blades, engine components applications.  相似文献   

14.
《钢铁冶炼》2013,40(8):619-624
Abstract

The article is devoted to the investigation of interaction between electrovortex and heat flows of liquid metal in dc arc furnaces with a bottom electrode. A mathematical model of liquid steel flows in a dc arc furnace with a bottom electrode was developed, and an algorithm of a three-stage solution was produced based on standard software packages. The results of electromagnetic, heat transfer and hydrodynamic analysis in industrial dc arc furnaces are given. It is shown that the Lorentz force makes up ~30% of the volumetric gravity force and makes the main contribution to vortex flow of liquid metal in a dc arc furnace. The convection flows with the maximum heat power of furnace make a significant contribution to the vortex flow of liquid metal, and the maximum value of the vortex flow velocity is ~1·5 times more than the movement without convection. The verification of results has been carried out by comparing them with general electrovortex flows theory, experimental data and results of similar software packages.  相似文献   

15.
The heat-and-mass transfer in the working space of an electric arc furnace (EAF) is analyzed on the basis of the real metal losses in industrial furnaces. The energy exchange between the arc discharge and the environmental space of the surface filled with the radiating and absorbing vapor-dust-gas medium is shown to change. The processes of metal evaporation and vapor condensation in the working space of EAF are considered.  相似文献   

16.
A mathematical model describing the transport processes in the plasma arc in dc electric arc furnaces has been developed. The equations of conservation of mass, momentum, and energy are solved numerically in conjunction with Maxwell's equations of the electromagnetic field to calculate the velocity and temperature distributions in the plasma region. The heat transfer from the arc to a rigid anode surface is calculated. The model is applied to obtain quantitative results on the relative importance of the various modes of heat transfer from the electric arc to the anode surface. Computational results were obtained for varying arc current magnitudes and anode-cathode distances. The model predicts higher arc jet velocity and a broader arc core at higher arc current. The shorter arc length is more efficient for transferring heat to the anode.  相似文献   

17.
High-speed photography is utilized to capture an image of the arc area during the welding process.The variation in arc shape and droplet transfer behavior is compared when employing shielding gases of different components and proportions(e.g.,80%Ar+20%CO2,85%Ar+10%CO2+5%O2,65%Ar+26.5%He+8%CO2+0.5%O2)using a φ1.2 mm welding wire under 360 A current.Furthermore,the effects of various shielding gas components on the stability of the welding process are discussed.It was determined that the addition of oxygen and helium changed the arc's shape and the behavior of the droplet transfer,and the welding process stability increased.  相似文献   

18.
This article presents a mathematical model simulating the effects of surface tension (Maragoni effect) on weld pool fluid flow and weld penetration in spot gas metal arc welding (GMAW). Filler droplets driven by gravity, electromagnetic force, and plasma arc drag force, carrying mass, thermal energy, and momentum, periodically impinge onto the weld pool. Complicated fluid flow in the weld pool is influenced by the droplet impinging momentum, electromagnetic force, and natural convection due to temperature and concentration gradients, and by surface tension, which is a function of both temperature and concentration of a surface active element (sulfur in the present study). Although the droplet impinging momentum creates a complex fluid flow near the weld pool surface, the momentum is damped out by an “up-and-down” fluid motion. A numerical study has shown that, depending upon the droplet’s sulfur content, which is different from that in the base metal, an inward or outward surface flow of the weld pool may be created, leading to deep or shallow weld penetration. In other words, it is primarily the Marangoni effect that contributes to weld penetration in spot GMAW.  相似文献   

19.
Liquid jet impingement has many industrial cooling applications such as metal manufacturing and steel cooling on run‐out tables (ROT). The development of the wetting front around the impingement point of a jet is central in jet impingement cooling. In this paper, the effects of moving target surface and jet Reynolds number on wetted zone and on the formation and location of hydraulic jump (HJ) are explored through a series of industrial‐scale experiments of an impinging circular free surface long water jet with high Reynolds number of 11 000–50 000 and industrial jet parameters. The moving test surface impacts the radial evolution of circular wetted zone in all directions and alter the circular HJ at the wetting front into a non‐circular contour that depends on the jet Re number. The limited relations in the literature do not represent these measured shapes and do not appropriately predict radii of HJ in industrial scale. A new correlation for radius of non‐circular HJ has been derived in this study that compared more accurately to the experimental data. Numerical simulations of radial impingement flow on moving surface were performed using a variant of kε turbulent model and results are compared to the experimental data. The computational results for the wetting front were found to be close to the experimental data indicating the appropriate performance of the turbulent model.  相似文献   

20.
A study was conducted on dilution of single pass arc welds of type 308 stainless steel filler metal deposited onto A36 carbon steel by the plasma arc welding (PAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), and submerged are welding (SAW) processes. Knowledge of the arc and melting efficiency was used in a simple energy balance to develop an expression for dilution as a function of welding variables and thermophysical properties of the filler metal and substrate. Comparison of calculated and experimentally determined dilution values shows the approach provides reasonable predictions of dilution when the melting efficiency can be accurately predicted. The conditions under which such accuracy is obtained are discussed. A diagram is developed from the dilution equation which readily reveals the effect of processing parameters on dilution to aid in parameter optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号