首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chondroitin 4-sulfotransferase, which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 4 of N-acetylgalactosamine in chondroitin, was purified 1900-fold to apparent homogeneity with 6.1% yield from the serum-free culture medium of rat chondrosarcoma cells by affinity chromatography on heparin-Sepharose CL-6B, Matrex gel red A-agarose, 3',5'-ADP-agarose, and the second heparin-Sepharose CL-6B. SDS-polyacrylamide gel electrophoresis of the purified enzyme showed two protein bands. Molecular masses of these protein were 60 and 64 kDa under reducing conditions and 50 and 54 kDa under nonreducing conditions. Both the protein bands coeluted with chondroitin 4-sulfotransferase activity from Toyopearl HW-55 around the position of 50 kDa, indicating that the active form of chondroitin 4-sulfotransferase is a monomer. Dithiothreitol activated the purified chondroitin 4-sulfotransferase. The purified enzyme transferred sulfate to chondroitin and desulfated dermatan sulfate. Chondroitin sulfate A and chondroitin sulfate C were poor acceptors. Chondroitin sulfate E from squid cartilage, dermatan sulfate, heparan sulfate, and completely desulfated N-resulfated heparin hardly served as acceptors of the sulfotransferase. The transfer of sulfate to the desulfated dermatan sulfate occurred preferentially at position 4 of the N-acetylgalactosamine residues flanked with glucuronic acid residues on both reducing and nonreducing sides.  相似文献   

2.
Heparan sulfate 2-sulfotransferase, which catalyzes the transfer of sulfate from adenosine 3'-phosphate 5'-phosphosulfate to position 2 of L-iduronic acid residue in heparan sulfate, was purified 51,700-fold to apparent homogeneity with a 6% yield from cultured Chinese hamster ovary cells. The isolation procedure included a combination of affinity chromatography on heparin-Sepharose CL-6B and 3',5'-ADP-agarose, which was repeated twice for each, and finally gel chromatography on Superose 12 . Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed two protein bands with molecular masses of 47 and 44 kDa. Both proteins appeared to be glycoproteins, because their molecular masses decreased after N-glycanase digestion. When completely desulfated and N-resulfated heparin and mouse Engelbreth-Holm-Swarm tumor heparan sulfate were used as acceptors, the purified enzyme transferred sulfate to position 2 of L-iduronic acid residue but did not transfer sulfate to the amino group of glucosamine residue or to position 6 of N-sulfoglucosamine residue. Heparan sulfates from pig aorta and bovine liver, however, were poor acceptors. The enzyme showed no activities toward chondroitin, chondroitin sulfate, dermatan sulfate, and keratan sulfate. The optimal pH for the enzyme activity was around 5.5. The enzyme activity was minimally affected by dithiothreitol and was stimulated strongly by protamine. The Km value for adenosine 3'-phosphate 5'-phosphosulfate was 0.20 microM.  相似文献   

3.
1. Human N-acetylgalactosamine-6-sulfate sulfatase (EC 3.1.6.-) from human placenta has been purified more than 3000-fold by gel filtration, ion-exchange and substrate affinity chromatography. The enzyme has a molecular weight of 90 000 by gel filtration chromatography and 85 000 by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Enzyme purified from cultured human skin fibroblasts has similar properties. 2. The tritium-labeled chrondroitin 6-sulfate trisaccharide N-acetylgalactosamine 6-sulfate-(beta, 1-4)-glucuronic acid-(beta, 1-3(-N-acetyl[1-3H]galactosaminitol 6-sulfate as substrate demonstrated a Km of 0.12 mM at pH 4.5. Sulfate was hydrolyzed only from the non-reducing terminal of this disulfated trisaccharide. Hyaluronic acid, dermatan sulfate, chondroitin 4-sulfate, heparin and chondroitin 6-sulfate tetrasaccharide were slightly inhibitory, whereas 6-sulfated pentasaccharides and heptasaccharides were strongly inhibitory. The enzyme dose not hydrolyze sulfate from N-acetylglucosamine 6-sulfate.  相似文献   

4.
Chondroitin sulfate-rich proteoglycans secreted by arterial intima smooth muscle cells appear involved in low density lipoprotein entrapment and modification. Hypothetically, such a process may contribute to atherogenesis. We compared composition and size of those proteoglycans synthesized by proliferating and resting human arterial smooth muscle cells for which low density lipoprotein had affinity. Lipoprotein-binding proteoglycans secreted by proliferating cells were larger than those of resting cells (M(r) = 1.1 x 10(6) versus 0.8 x 10(6). This was primarily caused by increased M(r) of the chondroitin sulfate chains (6 x 10(4) versus 3.5 x 10(4)). The glycosaminoglycan chains of the proteoglycans from both cells were made of more than 90% chondroitin 6-sulfate and chondroitin 4-sulfate in a 6:4 ratio. Affinity chromatography indicated that low density lipoprotein had a higher affinity with the proteoglycans synthesized by proliferating cells than those from resting cells. Measured with gel mobility shift assay, the apparent affinity constant of low density lipoproteins for proteoglycans from proliferating cells was 3-fold higher than that for proteoglycans from resting cells. This increased affinity appeared related to the higher relative proportion of proteoglycans with longer glycosaminoglycan chains secreted by the proliferating cells than those secreted by the resting cells.  相似文献   

5.
6.
An enzyme hydrolyzing flavine-adenine dinucleotide (FAD) to flavine mononucleotide (FMN) and adenosine monophosphate (AMP) was purified about 460-fold over the isolated lysosomal membranes with 9% recovery to apparent homogeneity, as determined from the pattern on polyacrylamide gel electrophoresis in the presence and the absence of SDS. Purification procedures included: preparation of crude lysosomal membranes, solubilization with Triton X-100, WGA-Sepharose, Con A-Sepharose, hydroxylapatite chromatography, gel filtration with Superdex 200, DEAE ion exchange chromatography, and preparative polyacrylamide gel electrophoresis. The molecular mass of the purified enzyme, estimated by gel filtration with Superdex 200, was approximately 560 kDa, and SDS-polyacrylamide gel electrophoresis showed the enzyme to be composed of four identical subunits with an apparent molecular weight of 140,000. The pH optimum for FAD hydrolysis was 8.5 with an apparent Km of 0.1 mM and the isoelectric point was pH 7.3. The activity was inhibited by o-phenanthroline, EDTA, DTT, and NEM and was slightly stimulated by Zn ion, but was not affected by Ca or Mg ions. The purified FADase contained N-linked complex type oligosaccharide chains lacking neuraminic acids. The NH2 terminal 21 amino acid residues of the purified FADase were Ser-Pro-Cys-Val-Cys-Asp-Pro-Val-Val-Val-Cys-Lys-Val-Val-Pro-Cys-Thr-Leu- Ala-Leu .  相似文献   

7.
The complete purification of malate dehydrogenase (EC 1.1.1.37) from extremely halophilic bacteria of the Dead Sea is described. The purification procedure includes (a) precipitation by ammonium sulfate, (b) fractionation on Sepharose 4B using a decreasing concentration gradient of ammonium sulfate, (c) gel permeation chromatography on Sephadex G-100, (d) chromatography on hydroxylapatite, and (e) affinity chromatography on 8-(6-aminohexyl)amino-NAD+-Sepharose at 4.26 M NaCl. The absorption and fluorescence spectra of the native and denatured enzyme were measured, and the extinction coefficient at 280 nm in 4.26 M NaCl was found to be 0.803 cm2mg-1. The amino acid composition analysis showed an excess of 10.4 mol % of acidic amino acids. The apparent specific "volume" phi' of the active enzyme at 4.26 M NaCl was found to be 0.680 +/- 0.015 mL/g. The molecular weight of the native enzyme was found to be 84 000 +/- 4000 determined in 4.26 M NaCl from equilibrium sedimentation data. The molecular weight of the subunits is 39 000 as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Thus, the native enzyme is composed of two subunits.  相似文献   

8.
(1) Binding of copolymeric as well as homopolymeric galactosaminoblycan to dermatan sulphate-substituted gels has been demonstrated. Materials bound in the presence of 0.15 M NaC1 was eluted with either 1 M urea, 0.5 M guanidine - HC1 or 0.5 M NaC1. Homopolymeric galactosaminoglycans were also displaced by 0.5 M sodium acetate. The interaction was not dependent on divalent cations. (2) Dermatan sulphate has been fractionated into aggregating and nonaggregating species by gel chromatography in the presence of 0.5 M sodium acetate. In the presence of 3.1 M sodium acetate or 0.5 M guanidine - HC1 no aggregation was observed. (3) Crosslinks formed during periodate oxidation at physiological ionic strength have been ascribed to chain-chain interaction. (4) Chondroitin 4-sulphate, heparan sulphate and heparin also showed interaction with gels substituted with copolymeric galactosaminoglycans, while chondroitin 6-sulphate, hyaluronate and keratan sulphate did not. (5) Binding of copolymeric galactosaminoglycan chains to dermatan sulphate- or chondroitin sulphate-substituted gels was most pronounced when the copolymeric chains similar proportions of L-iduronic and D-glucuronic acid.  相似文献   

9.
The gene encoding the D-aminoacylase of Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) was cloned and its complete nucleotide sequence was identified. The D-aminoacylase structural gene consists of 1452 nucleotides and encodes 484 amino acid residues. The molecular weight of D-aminoacylase was calculated to be 51,918. This value agreed well with the apparent molecular weight of 52,000 found for the purified enzyme from Alcaligenes A-6 by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The N-terminal amino acid sequence (NH2-SQSDSQPFDLLRAG-) predicted by the nucleotide sequence exactly matched those of the purified D-aminoacylase both from Alcaligenes A-6 and from cloned Escherichia coli (E. coli), with the exception of the removal of the N-terminal methionine processed after translation. The purified recombinant enzyme showed almost the same enzymatic properties as the native enzyme from Alcaligenes A-6. Alcaligenes A-6 D-aminoacylase showed 25-29% homology with L-aminoacylases from Bacillus stearothermophilus, porcine and humans.  相似文献   

10.
A structure-activity relationship of low molecular weight dermatan sulfate was undertaken to understand better this new non-heparin, glycosaminoglycan-based antithrombotic agent. A dermatan sulfate prepared from bovine intestinal mucosa [average molecular weight (MWavg) 25,000], and currently in clinical trials as an antithrombotic agent, was used in this study. Dermatan sulfate was partially depolymerized using hydrogen peroxide and copper(II) as catalyst to MWavg 5600 to obtain a low molecular weight dermatan sulfate. This low molecular weight dermatan sulfate was then fractionated by gel permeation chromatography to obtain four subfractions having MWavg 7800, 5500, 4200 and 1950. The dermatan sulfate, low molecular weight dermatan sulfate and its subfractions showed substantially different optical rotations. The 1H-NMR spectroscopic analysis of dermatan sulfate samples showed some differences including increased content of GalpNAc4S6S residues and improved resolution in ring resonances for low molecular weight dermatan sulfate fractions, primarily the result of reduced molecular weight and lowered heterogeneity. Saccharide compositional analysis relied on chondroitin ABC lyase treatment followed by capillary electrophoresis. Polyacrylamide gel-based oligosaccharide mapping was also performed by treating dermatan sulfate samples with chondroitin B, AC and ABC lysases. These analyses showed increased amounts of sulfation as the MWavg decreased. In vitro bioassay showed maximum anti-Xa activity in the 4.2 kDa fraction and maximum heparin cofactor II-mediated anti-IIa activity in the 5.5 kDa fraction. The in vivo antithrombotic activity of these fractions was measured using a modified Wessler stasis thrombosis model. The 4.2 kDa fraction showed greater antithrombotic activity than the other low molecular weight dermatan sulfate fractions, dermatan sulfate, and low molecular weight dermatan sulfate. This enhanced activity may result from several structural features of the 4.2 kDa fraction including: a high content of 4,6- and 2,4-disulfated disaccharide sequences; the requirement of specific chain length; a change in the ratio of iduronic to glucuronic acid; and the presence of chondroitin ABC lyase resistant material.  相似文献   

11.
Monoacylglycerol lipase was separated from triacylglycerol lipase and two kinds of esterase in the microsomes by heparin treatment and DEAE-cellulose column chromatography. Monoacylglycerol lipase was purified about 1200-fold by DEAE-cellulose, hydroxylapatite, SP-Sephadex and Sephadex G-100 column chromatography from rat liver whole homogenate. The purified enzyme showed a single protein band by sodium dodecyl sul fate gel electrophoresis. The molecular weight was calculated to be approx. 62 000 by gel filtration on Sephadex G-200 and sodium dodecyl sulfate gel electrophoresis. The enzyme had an isoelectric point of 6.80 and pH optimum of 8.5. The enzyme maximally hydrolyzed long chain monoacylglycerol such as monomyristoylglycerol and hydrolyzed 1(3)- and 2-monoacylglycerol at equal rates and showed a little hydrolytic activity on short chain triacylglycerol such as tributyrylglycerol, but did not hydrolyze long chain triacylglycerol. The enzyme had different Km and V in comparison with the esterase fro various short chain triacylglycerols and long chain monoacylglycerols. Moreover, monoacylglycerol lipase differed immunologically from two kinds of microsomal esterase. Diisopropyl fluorophosphate inhibited the enzyme activity completely.  相似文献   

12.
NADPH-cytochrome c (cytochrome P-450) reductase (EC 1.6.2.4) has been purified to homogeneity, as judged by sodium dodecyl sulfate disc gel electrophoresis, from detergent-solubilized rat and pig liver microsomes using an affinity chromatography procedure. Treatment of microsomes with a polyethoxynonylphenyl ether plus either cholate or deoxycholate and subsequent batch-wise DEAE-cellulose chromatography followed by biospecific affinity chromatography on Sepharose 4B-bound N6-(6-aminohexyl)-adenosine 2',5'-bisphosphate (2'5'-ADP-Sepharose 4B) result in a greater than 30% yield of purified reductase from microsomes. The enzyme contains 1 mol each of FAD and FMN and exhibits a molecular weight of 78,000 g mol-1 estimated by comparison with protein standards on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The turnover numbers calculated on the basis of flavin are 1360 min-1 and 1490 min-1 at 25 degrees for the pig and rat liver enzymes, respectively. Titration of these purified preparations aerobically with both NADPH and potassium ferricyanide demonstrated unequivocally that the air-stable, reduced form of NADPH-cytochrome c (P-450) reductase contains 2 electron equivalents, confirming recent results obtained by Masters et al. (Masters, B. S. S., Prough, R. A., and Kamin, H. (1975) Biochemistry 14, 607-613) for the proteolytically solubilized enzyme. In addition, these preparations are capable of reconstituting benzphetamine N-demethylation activity in the presence of partially purified cytochrome P-450 and dilauroylphosphatidylcholine, as measured by formaldehyde formation from benzphetamine.  相似文献   

13.
Purification of choline acetyltransferase from Drosophila melanogaster   总被引:1,自引:0,他引:1  
Choline acetyltransferase (EC 2.3.1.6) from Drosophila melanogaster (Canton S, wild type) was purified 12,500-fold to a final specific activity of 500 mumol min-1 mg protein-1. The purification used homogenized fly heads and consisted of polyethylene glycol precipitation, DEAE-Bio-Gel A chromatography, Octyl-Sepharose chromatography, and affinity chromatography using solid phase Green A-agarose. The molecular weight of the native enzyme, as determined by molecular exclusion chromatography, was approximately 67,000 daltons. The final enzyme preparation showed two major protein bands at 67,000 and 54,000 daltons on polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS). After molecular exclusion chromatography, both SDS gel bands were present in the single symmetrical peak that contained the enzyme activity. Two-dimensional tryptic peptide maps prepared from the individual SDS gel bands indicated that they have very similar primary structures. Both SDS gel bands were precipitated by two different monoclonal antibodies derived against Drosophila choline acetyltransferase activity. The structural and immunological relatedness of the two SDS gel bands indicates that the enzyme is essentially homogeneous and that, in the native state, it may consist of more than one polypeptide chain.  相似文献   

14.
Rabbit red blood cell hexokinase (EC 2.7.1.1.) has been purified 300,000-fold by a combination of ion exchange chromatography, affinity chromatography, and preparative polyacrylamide gel electrophoresis. The hexokinase activity has been isolated in 35% yield as a protein that is homogeneous by polyacrylamide and sodium dodecyl sulfate gel electrophoresis. The highest specific activity obtained was 145 units/mg of proteins. The native protein has a molecular weight of 110,000 by gel filtration on Ultrogel AcA 44 and 112,000 by sedimentation velocity on sucrose density gradients. Sodium dodecyl sulfate-polyacrylamide gels gave a molecular weight of 110,000 indicating that hexokinase is a monomer. The enzyme had a pI of 6.20 to 6.30 pH units by isoelectric focusing. The enzyme was specific for Mg . ATP and Mg . ITP as the nucleotide substrates. Several hexokinase with different affinities.  相似文献   

15.
The pituitary glycoprotein hormone lutropin is characterized by its pulsatile appearance in the bloodstream which is important for the expression of its biological activity in the ovary. We have previously shown that lutropin bears unique Asn-linked oligosaccharides terminating with GalNAc-4-SO4 which allow the hormone to be rapidly cleared from the bloodstream via a specific receptor in the liver, thus contributing to its pulsatile appearance in the circulation. Furthermore, we have found that carbonic anhydrase VI, synthesized by the submaxillary gland and secreted into the saliva, also bears Asn-linked oligosaccharides terminating with GalNAc-4-SO4, suggesting that this unique sulfated structure mediates other biological functions in addition to rapid clearance from the circulation. We report here the purification of a GalNAc-4-sulfotransferase which transfers sulfate to terminal beta 1,4-linked GalNAc on Asn-linked oligosaccharides. We show that the purified submaxillary gland enzyme has kinetic parameters identical to the pituitary enzyme, indicating that the same sulfotransferase is responsible for the sulfation of lutropin oligosaccharides in pituitary and carbonic anhydrase VI oligosaccharides in submaxillary gland. This GalNAc-4-sulfotransferase has an apparent molecular mass of 128 kDa and can be specifically photoaffinity radiolabeled with 3',5'-ADP, a competitive inhibitor of sulfotransferase activity. The acceptor specificity of this GalNAc-4-sulfotransferase indicates that it is able to transfer sulfate to terminal GalNAc beta 1,4GlcNAc on both N- and O-glycosidically linked oligosaccharides, suggesting that this enzyme is also responsible for the sulfation of O-linked glycans on proopiomelanocortin.  相似文献   

16.
The protease from Russell's viper venom that activates factor X (Stuart factor), factor IX (Christmas factor), and protein C was purified by gel filtration on Sephadex G-150 and QAE-Sephadex A-50 column chromatography. The purified enzyme migrated as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 79 000. A minimal molecular weight of 78 500 +/- 800 was determined by sedimentation equilibrium in the presence of 6 M guanidine hydrochloride. Upon reduction with 2-mercaptoethanol, a heavy chain (mol wt 59 000) and a light chain were observed. The light chain migrated as a single band (mol wt 19 000) in 7.5% polyacrylamide-sodium dodecyl sulfate gels but appeared as a doublet (mol wt 18 000 and 20 000) in 10% polyacrylamide-sodium dodecyl sulfate gels. The amino-terminal end of the heavy chain was heterogeneous and contained isoleucine, valine and serine. The amino-terminal sequence of the light chain was Val-Leu-Asp. The factor X activator contained 13% carbohydrate including 6.0% hexose, 1.7% N-acetyleneuraminic acid, and 5.3% galactosamine. Most of the carbohydrate was found to be present in the heavy chain, although some was also observed in both forms of the light chain. The factor X activator had no esterase activity toward benzoyl-Phe-Val-Arg-p-nitroanilide or benzoylarginine ethyl ester and was not inhibited by 0.05 M diisopropyl phosphorofluoridate. These data indicate that factor X activator from Russell's viper venom is a highly specific protease composed of one heavy chain and one light chain, and these chains are held together by a disulfide bond(s).  相似文献   

17.
Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), the first enzyme in phenylpropanoid biosynthesis, catalyzes the elimination of ammonium ion from L-phenylalanine. In the present study, PAL was purified through ammonium sulfate fractionation, DEAE-cellulose chromatography, Sephadex G-200 chromatography, and Q-Sepharose chromatography from the cytosolic fraction of leaf mustard (Brassica juncea var. integrifolia). It consists of 4 subunits, each having an estimated molecular weight of about 40,000 on SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal pH and temperature of the purified enzyme are 9.0 and 45 degrees C, respectively. Its activity is inhibited by Zn2+ ion, and it is strongly activated by caffeic acid. The purified PAL seems to have some characteristics different from those obtained with other PALs.  相似文献   

18.
Glycosaminoglycan biosynthesis was studied in developing chick corneas, with particular attention paid to keratan sulfate I, the major glycosaminoglycan of this tissue. This polysaccharide is unique to the cornea and may be required for the development and maintenance of corneal transparency. Corneas from 5-to 20-day chick embryos were labeled in vitro with D-[6- 3H] glyhucosamine and H(2)35SO(4)35SO(4) and the amount of label in each glycosaminoglycan was determined. The data indicate that, contrary to previous suggestions, keratan sulfate biosynthesis in the cornea begins at the time of fibroblast invasion of the primary stroma, at least 8 days prior to the onset of corneal transparency, which occurs on Day 14 of the development in the chick. The rate of incorporation of radioactivity into keratan sulfates, on a dry weight basis, increases rapidly after Day 6 and levels off on Day l4. The proportion of 3H and 35S in keratan sulfate reaches nearly maximal levels as early as Day 9. In contrast, the proportion of radioactivity in corneal heparan sulfates declines rapidly after Day 5. However, the rate of incorporation of radioactivity into heparan sulfates, on a dry weight basis, increases or remains the same during early development. On and after Day 14, keratan sulfates appear to become more highly sulfated. Moreover, the ratios of 4-sulfated to 6-sulfated chondroitin sulfates increase during development, reaching a maximum on Day 14. These changing patterns of glycosaminoglycan biosynthesis during corneal development may play an important role in corneal morphogenesis and the achievement of corneal transparency  相似文献   

19.
Chondroitin sulfates were isolated from the mud snail. For the quantitative analysis of enzymatic digestion products of isolated chondroitin sulfates, strong anion exchange-high performance liquid chromatography (SAX-HPLC) was performed. By the action of chondroitinase ABC, three unsaturated disaccharides 2-acetamide-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-galactose (delta Di-OS), 2-acetamide-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-6-O-sulfo-D-galactose (delta Di-6S) and 2-acetamide-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose (delta Di-4S) were produced from the mud snail chondroitin sulfates. The analysis showed that relative proportion of delta Di-OS/delta Di-6S/delta Di-4S was 58.7/3.1/38.2. The immunomodulating activity of chondroitin sulfate was examined by cell proliferation assay and these results suggest that it might be a immunosuppressant.  相似文献   

20.
Hydrolysis of the gentisate ring-cleavage product, maleylpyruvate (cis-2,4-diketohept-5-enedioic acid), was shown to be catalyzed by an enzyme, maleylpyruvate hydrolase 11, in Pseudomonas alcaligenes (P25X1) after growth with 3-hydroxybenzoate. This activity was separated from fumarylpyruvate hydrolase activity during the course of its purification which accomplished an approximately 50-fold increase in specific activity. An apparent molecular weight of 77,000 was assigned on the basis of Sephadex G-200 chromatography. Despite the presence of up to three similarly migrating bands of protein on polyacrylamide-gel electrophoresis of the purified enzyme, at least two of these bands possessed maleylpyruvate hydrolase activity. Electrophoresis on sodium dodecyl sulfate-polyacrylamide before and after reduction with mercaptoethanol gave a principal band of molecular weight of 33,000 (and a minor band of molecular weight 50,000). A number of substituted maleylpyruvates also served as substrates for maleylpyruvate hydrolase 11, but maleylacetoacetate and fumarylpyruvate were not attacked. Fumarylpyruvate hydrolase was purified approximately 40-fold to give a single band on polyacrylamide gels and with an apparent molecular weight of 73,000 by Sephadex G-200 chromatography. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis before or after reduction with mercaptoethanol, a subunit molecular weight of 25,000 was obtained. Neither maleylpyruvate nor fumarylacetoacetate served as substrates for fumarylpyruvate hydrolase. The activities of both maleyl- and fumarylpyruvate hydrolases were stimulated by Mn(2+) ions. Reasons are discussed for the presence of both enzyme activities, one of which appears to be redundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号