首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Under mild conditions with the aid of ultrasonic, multi‐walled carbon nanotubes (MWNTs) have been functionalized by mixed acid treatment which was proved by FTIR and XPS. According to SEM, acid treatment on MWNTs decreased the thickness of the membrane. However, no devastating damage and fracture happened on MWNTs after acid treatment under mild conditions. Precipitation observation illustrated that the enhanced solubility of MWNTs in water, ethanol, and dimethylformaide (DMF). Further, MWNTs/polyetherimide (PEI) nanocomposite films have been prepared by the simple solution casting method. The dispersion of MWNTs in polyetherimide (PEI) matrix was observed by Atomic Force Microscopy (AFM) which illustrated the improved dispersion for acid treated MWNTs in PEI. The adding of MWNTs in PEI decreased the dispersive component of surface energy and increased the polar component of surface energy, which resulted in the decrement of film surface energy. Differential scanning calorimetry showed that the glass transition temperature of PEI increased by about 4°C after the introduction of MWNTs. This improvement was related to the better affinity between MWNTs and PEI matrix, which also resulted in the improvement of mechanical strength in MWNTs/PEI nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Flexible conductive nanocomposites with the ability of self‐assembly into well‐ordered structures are promising multifunctional materials for energy conversion and storage devices. In this work, flexible nanocomposites based on multi‐walled carbon nanotubes (MWCNTs) and poly(styrene‐butadiene‐styrene) (SBS) were obtained by solution casting, followed by a post‐annealing treatment, during 7 days at 110 °C, to enable the self‐organization of the SBS. The impact of the MWCNTs on the self‐assembly was studied by atomic force microscopy and Small angle X‐rays scattering, and the conductivity of these nanocomposites was analyzed over the broadband frequency range, that is, 10?1–106 Hz. The results revealed that the lower MWCNTs loadings (~0.2 v %) were the most suitable to achieve a conductive network through the SBS, maintaining self‐assembled domains. These domains include hexagonally packed cylinders and alternating lamellae. Furthermore, at loadings above 1 v %, the impact of further MWCNTs addition on the conductivity was marginal over the whole frequency range and the self‐assembly tendency was progressively reduced. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46650.  相似文献   

3.
苯乙烯和甲基丙烯酸甲酯梯度共聚物的应用   总被引:1,自引:0,他引:1  
将用原子转移自由基聚合及连续补加甲基丙烯酸甲酯(MMA)的方法制备的苯乙烯(St)/MMA梯度聚合物P(Pt-t-MMA)作为增容剂应用于聚氯乙烯/苯乙烯-丁二烯-苯乙烯嵌段共聚物(PVC/SBS)和PS/PMMA聚合物合金的增容和改性。扫描电镜结果表明,P(St-t-MMA)可以改善PVC/SBS和PMMA/PS合金的相容性。PVC/SBS合金中加入少量P(St-t-MMA)后,冲击强度从6.0kJ/m^2提高到12.1kJ/m^2,加工流变性能得到了改善。SBS用量也影响PVC/SBS合金的冲击强度。  相似文献   

4.
The mass transport of methanol mixed with ferric chloride hexahydrate (FeCl3 · 6H2O) in poly(methyl methacrylate) and poly(methyl methacrylate)/iron carbonate particulate(p) nanocomposites is prepared by chemical vapor crystallization and the resulting materials, which are subjected to characterization to evaluate thermal and optical properties, have been investigated. Mass transport is an anomalous and endothermic process and satisfies the van't Hoff plot. We have prepared successfully poly(methyl methacrylate)(PMMA)/iron carbonate particulates nanocomposites using CO2 gas slowly diffused into saturated solvent mixture‐treated poly(methyl methacrylate) for 48 h. After SEM observation, approximately 80 nm iron carbonate particulates were precipitated and evenly distributed in the poly(methyl methacrylate) matrix. In comparison with solvent mixture‐treated PMMA, the cut‐off wavelength of transmittance in nanocomposites shifts to the shorter wavelength side (red shift). The presence of nanoscale iron carbonate particulates increased the glass transition temperature of the nanocomposites as determined by differential scanning calorimeter, and the glass transition temperature increased with increasing content of nanoscale iron carbonate particulates. The FTIR spectra of solvent mixture‐treated poly(methyl methacrylate) and nanocomposites are also studied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2329–2338, 2005  相似文献   

5.
Polymer/clay nanocomposites (PCNs) of poly(methyl methacrylate) and an organically modified clay, Cloisite 15a, were synthesized in situ with a suspension polymerization technique. The amount of clay present in the PCNs was varied to provide a better understanding of the effect of the clay on the properties of the polymer matrix. However, unexpectedly, we found that the concentration of clay had a dramatic impact on the molecular weight of the polymer matrix, and a relationship between the clay concentration and polymer molecular weight was determined. The PCNs were characterized with size exclusion chromatography (SEC), X‐ray diffraction, transmission electron microscopy, and oscillatory shear rheology. From oscillatory shear rheology, the full master curves for the PCNs were obtained by application of the time–temperature superposition principle. To enable the effect of the clay on the rheology to be quantified, the experimental data was compared to the time‐dependent diffusion model of des Cloizeaux for polydisperse polymer melts, which enabled the polydispersity to be incorporated through the use of the molecular weight distribution obtained via SEC. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
A novel poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) antistatic and flame‐retardant agent, poly(ethylene glycol) methacrylate/methyl methacrylate/diethyl allylphosphonate (PMMD), was synthesized from poly(ethylene glycol) methacrylate, methyl methacrylate, and diethyl allylphosphonate by free‐radical precipitation polymerization in the aqueous phase to improve the antistatic and flame‐retardant performance at the same time. Through adjustments of the molar ratios of the three monomers, various antistatic, flame‐retardant copolymers (PMMD) were synthesized. The molecular structure and thermal stability of PMMD were analyzed with Fourier transform infrared spectroscopy and thermogravimetric analysis. The electrical resistivity and flame‐retardant and mechanical properties of the ABS/PMMD composites were analyzed by a ZC90 megohmmeter, an oxygen index meter, a vertical burning tester, a memory impact testing machine, and a tensile testing machine. The morphology of PMMD in the ABS blends was characterized with scanning electron microscopy. The compatibilities of PMMD and ABS were characterized by the calculation of the thermodynamic work of adhesion via the measurement of the contact angle. The results show that the antistatic and flame‐retardant performance of ABS were greatly improved by the PMMD copolymer and the mechanical properties of ABS showed little reduction. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44126.  相似文献   

7.
Bis(3‐triethoxysilylpropyl) tetrasulfane (TSS) was reacted with the silanol groups of the commercially available clay, Closite®25A (C25A) to prepare TSS‐C25A, which was melt‐compounded with acrylonitrile‐butadiene‐styrene copolymer (ABS). The tetra sulfide groups of TSS‐C25A may chemically react with the vinyl groups of ABS to enhance the interaction between the clay and ABS. The ABS/clay composites exhibited much higher tensile strength and elongation at break than the neat ABS. Especially the elongation at break of ABS/TSS‐C25A composite was 5 times higher than that of neat ABS. The X‐ray diffraction patterns of the clay showed that the d001 basal spacing was enlarged from 1.89 nm to 2.71–2.86 nm as a result of the compounding with ABS. According to the thermogravimetric analysis, the thermal decomposition of the composite took place at a slightly higher temperature than that of neat ABS. Intercalated/exfoliated coexisting structures were observed by transmission electron microscopy for the ABS/clay composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Nanocomposites of blends of polymethylmethacrylate (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with multi‐walled carbon nanotubes (MWCNTs) were prepared by melt mixing in a twin‐screw extruder. The dispersion state of MWCNTs in the matrix polymers was investigated using transmission electron microscopy. Interestingly enough, in most of the nanocomposites, the MWCNTs were observed to be mainly located at SAN domains, regardless of the SAN compositions in the PMMA/SAN blend and of the processing method. One possible reason for this morphology may be the π–π interactions between MWCNTs and the phenyl ring of SAN. The shift in G‐band peak observed in the Raman spectroscopy may be the indirect evidence proving these interactions. The percolation threshold for electrical conductivity of PMMA/SAN/MWCNT nanocomposites was observed to be around 1.5 wt %. Nanocomposites with PMMA‐rich composition showed higher electrical conductivity than SAN‐rich nanocomposites at a fixed MWCNT loading. The dielectric constant measurement also showed composition‐dependent behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The effect of preshearing resin mixtures prior to casting on the structure and properties of in situ polymerized poly(methyl methacrylate)/clay nanocomposite panels was investigated. The preshearing was performed with a mechanical stirrer and controlled by varying mixing time. The structure, thermomechanical, and optical properties of the panels prepared with different preshearing times were analyzed by XRD, TEM, DMA, and UV/visible spectrophotometer. The properties of the panels increased with preshearing time because of improved intercalation and exfoliation of the clay. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Poly(methyl methacrylate) (PMMA)/organoclay nanocomposites prepared by melt‐compounding using a co‐rotating twin‐screw extruder were intercalated nanocomposites. Commercially available PMMA resins of various molecular weights were used for comparison. The results showed an optimum compounding temperature for maximum intercalation with balanced shear and diffusion. Higher operating temperature reduced the shear mixing effect, and might have induced early degradation of the organoclay. Lower operating temperature, in contrast, reduced the mobility of the polymer molecules, which not only hampered the intercalation attempts, but also generated high torque in the extrusion. The mechanical behavior of the nanocomposites was studied. The tensile modulus, storage modulus and glass transition temperature of the nanocomposites increased with increasing clay content; however, an associated decrease in strength and strain at break was also observed. The notched impact strength also showed a slight decrease with clay content. Nanocomposites based on the lower molecular weight PMMA yielded more significant improvement in mechanical and thermal properties at the same clay content. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
A series of poly(methyl methacrylate) (PMMA)/octavinyl polyhedral oligomeric silsesquioxane (POSS) blends were prepared by the solution‐blending method and characterized with Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. The glass‐transition temperature (Tg) of the PMMA–POSS blends showed a tendency of first increasing and then decreasing with an increase in the POSS content. The maximum Tg reached 137.2°C when 0.84 mol % POSS was blended into the hybrid system, which was 28.2°C higher than that of the mother PMMA. The X‐ray diffraction patterns, transmission electron microscopy micrographs, and Fourier transform infrared spectra were employed to investigate the structure–property relationship of these hybrid nanocomposites and the Tg enhancement mechanism. The results showed that at a relatively low POSS content, POSS as an inert diluent decreased the interaction between the dipolar carbonyl groups of the homopolymer molecular chains. However, a new stronger dipole–dipole interaction between the POSS and the carbonyl of PMMA species formed at the same time, and a hindrance effect of nanosize POSS on the motion of the PMMA molecular chain may have played the main role in the Tg increase of the hybrid nanocomposites. At relatively high POSS concentrations, the strong dipole–dipole interactions that formed between the POSS and carbonyl groups of the PMMA gradually decreased because of the strong aggregation of POSS. This may be the main reason for the resultant Tg decrease in these hybrid nanocomposites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
In this work, we synthesized poly(methyl methacrylate) (PMMA)/expanded graphite (EG) nanocomposites by a new polymerization method. The volume electrical conductivity of the nanocomposite prepared by this way is very high (when the content of EG is about 8 wt %, the conductivity could reach 60 S/cm). The structure of the nanocomposite was investigated by SEM, TEM, IR, and XRD. And we found temperature and voltage were important parameters of governing the electrical conductivity of PMMA/EG nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1427–1431, 2006  相似文献   

13.
Poly(styrene butylacrylate) latex/nano‐ZnO composites were prepared by blending poly(styrene butylacrylate) latex with a water slurry of nano‐ZnO particles, and the effects of certain parameters, such as particle size, dispersant type, dispersing time and others, on the dispersibility, mechanical properties, ultraviolet (UV) shielding and near infrared (NIR) shielding were investigated with transmission electron microscopy (TEM), an Instron testing machine, dynamic mechanical analysis and ultraviolet‐visible‐near infrared (UV‐VIS‐NIR) spectrophotometry. TEM observation showed that dispersants with long chains are better than those with short chains at enhancing the dispersibility of nano‐ZnO particles in a matrix; extending dispersing time also improves the dispersibility of nano‐ZnO particles in a matrix. Instron tests showed that the nanocomposite polymers embedded with nano‐ZnO particles had much higher tensile strength than the corresponding composite polymers with micro‐ZnO particles. As the nano‐ZnO content increased, the temperature of glass transition (Tg) of the nanocomposite polymer embedded with 60 nm ZnO particles first increased then decreased, but 100 nm ZnO and micro‐ZnO particles seemed to have no influence on the Tg of the composite polymers. The better dispersibility of nano‐ZnO particles resulted in higher Tg values. Increasing nano‐ZnO content or dispersibility could enhance the UV shielding properties of the nanocomposite polymers, and 60 nm ZnO particles could more effectively shield UV rays than 100 nm ZnO particles. Micro‐ZnO particles basically had no effect on the UV absorbance of the composite polymers. A blue‐shift phenomenon was observed at 365 nm when nano‐ZnO particles were present in the nanocomposite polymers. NIR analysis indicated that as nano‐ZnO content increased, the NIR shielding of the nanocomposite polymers increased, but the NIR shielding properties seemed to be more influenced by particle size than by the nano‐effect. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1923–1931, 2003  相似文献   

14.
The aim of this study is to improve the anticorrosive property of 7Cu3Zn brass. The methyl‐methacrylate (MMA) monomer solution, modified with fluorine radical and silicone, was used as the polymer matrix to mix with the different percentages of modified montmorillonite (MMT) loading and to exfoliate the lamellar structure of MMT on a nanometer scale during the solution polymerization process, and then form a thin nanocomposites coating on brass as a protective layer. The structural characterization was examined using Fourier transform infrared spectroscopy, X‐ray diffraction (XRD), and transmission electron microscope (TEM). The anticorrosive property of nanocomposites was evaluated using potentiodynamics polarization and electrochemical impedance spectra. The results show that the d‐spacing of MMT was increased, and both exfoliation and intercalation microstructure were observed. Moreover, with the MMT loading increase, the appearance of the intercalation microstructure was more remarkable as a result of silicate layers aggregation. The 1.0 wt %‐coated brass coupons presented the optimistic property of anticorrosion, whose oxygen permeability, corrosion current (icorr), polarization resistance (Rp), and corrosion rate (Rcorr) were 3.5 g/(m2°h), 6.86 nA/cm2, 5.81 × 105 Ω°cm2, and 0.103 × 10?3 mm/year, respectively. These results indicate that nanocomposites have potential for anticorrosion application. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4135–4143, 2007  相似文献   

15.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were synthesized by a simple technique of a monomer casting method, bulk polymerization. The products were purified by hot acetone extraction and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), examination of their mechanical properties, and light transmittance testing. Although XRD data did not show any apparent order of the MMT layers in the nanocomposites, TEM revealed parallel MMT layers with interlamellar spacings of an average of 9.8 nm and the presence of remnant multiplets of nonexfoliated layers. Therefore, PMMA chains were intercalated in the galleries of MMT. DSC and TGA traces also corroborated the confinement of the polymer in the inorganic layer by exhibiting the increase of glass‐transition temperatures and mass loss temperatures in the thermogram. Both the thermal stability and the mechanical properties of the products appeared to be substantially enhanced, although the light transmittances were not lost. Also, the materials had excellent mechanical properties. Measurement of the tensile properties of the PMMA/MMT nanocomposites indicated that the tensile modulus increased up to 1013 MPa with the addition of 0.6 wt % MMT, which was about 39% higher than that of the corresponding PMMA; the tensile strength and Charpy notched impact strength increased to 88 MPa and 12.9 kJ/m2, respectively. As shown by the aforementioned results, PMMA/MMT nanocomposites may offer new technology and business opportunities. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 348–357, 2005  相似文献   

16.
An in situ polymerization with a later solution co‐mixing approach was used in the preparation of polymethyl methacrylate (PMMA) matrix composites using hydroxyapatite (HA) nanoparticles and short carbon fibers(C(f)) as reinforcing materials. The microstructures and fracture surface morphologies of the prepared C(f)/HA‐PMMA composite were characterized using XRD, FTIR, SEM, EDS, and FESEM analyses. The mechanical properties of the composites were tested by a universal testing machine. Results show that the surface of nitric acid‐oxidized carbon fibers and lecithin‐treated HA contain new functional groups. Uniform dispersion of short fibers and HA nanoparticles in PMMA matrix is successfully achieved and the mechanical properties of the composites are obviously improved. The flexural strength, flexural modulus, and Young's modulus of the composites reach the maximum value 128.12 MPa, 1.150 GPa, and 4.572 GPa when carbon fiber and HA mass fraction arrive to 4% and 8%, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Free radical copolymerization kinetics of 2‐(diisopropylamino)ethyl methacrylate (DPA) with styrene (ST) or methyl methacrylate (MMA) was investigated and the corresponding copolymers obtained were characterized. Polymerization was performed using tert‐butylperoxy‐2‐ethylhexanoate (0.01 mol dm?3) as initiator, isothermally (70 °C) to low conversions (<10 wt%) in a wide range of copolymer compositions (10 mol% steps). The reactivity ratios of the monomers were calculated using linear Kelen–Tüd?s (KT) and nonlinear Tidwell–Mortimer (TM) methods. The reactivity ratios for MMA/DPA were found to be r1 = 0.99 and r2 = 1.00 (KT), r1 = 0.99 and r2 = 1.03 (TM); for the ST/DPA system r1 = 2.74, r2 = 0.54 (KT) and r1 = 2.48, r2 = 0.49 (TM). It can be concluded that copolymerization of MMA with DPA is ideal while copolymerization of ST with DPA has a small but noticeable tendency for block copolymer building. The probabilities for formations of dyad and triad monomer sequences dependent on monomer compositions were calculated from the obtained reactivity ratios. The molar mass distribution, thermal stability and glass transition temperatures of synthesized copolymers were determined. Hydrophobicity of copolymers depending on the composition was determined using contact angle measurements, decreasing from hydrophobic polystyrene and poly(methyl methacrylate) to hydrophilic DPA. Copolymerization reactivity ratios are crucial for the control of copolymer structural properties and conversion heterogeneity that greatly influence the applications of copolymers as rheology modifiers of lubricating oils or in drug delivery systems. © 2015 Society of Chemical Industry  相似文献   

18.
Submicron polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends were generated by the precipitation with a compressed antisolvent (PCA) technique. The generation of PS/PMMA blends was carried out by spraying a solution containing PS and PMMA into a precipitator. The blends without coalescence were observed to only be generated when both vapor and liquid CO2 existed in the precipitator combined with appropriate total polymer concentration in solution, molecular weights (Mws) of PS and PMMA, mass ratio of PS to PMMA, flow rates of CO2 and polymer solution, and liquid CO2 level in the precipitator. Two Mws of PS, 144,000 and 44,000, and two Mws of PMMA, 85,000 and 36,000, were used in this study. It was found that the blends could be easier to generate using a higher PS Mw, a lower PMMA Mw, and a higher mass ratio of PS to PMMA. Toluene with a solubility parameter smaller than that of tetrahydrofuran (THF) was found to be the more appropriate solvent for generating spherical PS/PMMA submicron blends. The SEM and TEM images show that the spherical PS/PMMA core/shell blends could be generated at a temperature of 298 K, a pressure of 6.41 MPa, a liquid CO2 level of 1/2 of the precipitator, a CO2 flow rate of 2000 mL/min, a solution flow rate of 5 or 10 mL/min, and a total polymer concentration of 0.72 wt% for a PS Mw of 144,000, a PMMA Mw of 36,000, and a PS/PMMA mass ratio of 9/1. Individual and spherical PS and PMMA particles or spherical PS particles partially covered by a PMMA films, however, were generated when the liquid CO2 level was of 1/8 or lower in the precipitator. A possible mechanism for the formation of core-shell blend was proposed.  相似文献   

19.
Polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) was synthesized by two steps of reversible addition‐fragmentation transfer (RAFT) polymerization of styrene (St) and 4‐vinylpyridine (4VP) successively. After P4VP block was quaternized with CH3I, PS‐b‐quaternized P4VP/montmorillonite (PS‐b‐QP4VP/MMT) nanocomposites were prepared by cationic exchange reactions of quaternary ammonium ion in the PS‐b‐QP4VP with ions in MMT. The results obtained from X‐ray diffraction (XRD) and transmission electron microscopy (TEM) images demonstrate that the block copolymer/MMT nanocomposites are of intercalated and exfoliated structures, and also a small amount of silicates' layers remained in the original structure; differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results show that the nanocomposites displayed higher glass transition temperature (Tg) and higher thermal stability than that of the corresponding copolymers. The blending of PS‐b‐QP4VP/MMT with commercial PS makes MMT to be further separated, and the MMT was homogeneously dispersed in the polymer matrix. The enhancement of thermal stability of PS/PS‐b‐QP4VP/MMT is about 20°C in comparison with commercial PS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1950–1958, 2006  相似文献   

20.
BACKGROUND: Recently, much work has focused on the efficient dispersion of carbon nanotubes (CNTs) throughout a polymer matrix for mechanical and/or electrical enhancement. However, there are still only few reports about gradient distribution of CNTs in polymer matrices. In the work reported here, CNTs embedded in a polymer film with a gradient distribution were successfully obtained and studied. RESULTS: For composite films with gradient distributions of CNTs, the upper surface behaves as an intrinsic insulator, while the lower one behaves as a semiconductor, or even as a conductor. It is also found that with an increase of 1 wt% CNTs, the resistance of the bottom surface decreases by 2–3 orders of magnitude, as compared with pure polyarylene ether nitrile; furthermore, when the proportion of CNTs increases up to 5 wt%, the resistance of the bottom surface shows only very little change. As a result, sufficient matrix conductivity of the bottom surface could be achieved at a lower filler concentration with CNTs in a gradient distribution. Meanwhile, the thermal stability, glass transition temperature and tensile properties of the matrix are maintained. CONCLUSION: There is considerable interest in such gradient composite films, which could be applied in the electrical engineering, electronics and aerospace fields, for their excellent mechanical properties, thermal stability and novel electrical properties. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号