首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Wholly aromatic polyamides (aramids) are high‐performance polymeric materials with outstanding heat resistance and excellent chemical stabilities due to chain stiffness and intermolecular hydrogen bonding of amide groups. Synthesis of structurally well‐designed monomers is an effective strategy to prepare modified forms of these aramids to overcome lack of organo‐solubility and processability limitations. RESULTS: A novel class of wholly aromatic polyamides was prepared from a new diamine, namely 2,2′‐bis(p‐phenoxyphenyl)‐4,4′‐diaminodiphenyl ether (PPAPE), and two simple aromatic dicarboxylic acids. Two reference polyamides were also prepared by reacting 4,4′‐diaminodiphenyl ether with the same comonomers under similar conditions. M?w and M?n of the resultant polymers were 8.0 × 104 and 5.5 × 104 g mol?1, respectively. Polymers resulting from PPAPE exhibited a nearly amorphous nature. These polyamides exhibited excellent organo‐solubility in a variety of polar solvents and possessed glass transition temperatures up to 200 °C. The 10% weight loss temperatures of these polymers were found to be up to 500 °C under a nitrogen atmosphere. The polymers obtained from PPAPE could be cast into transparent and flexible films from N,N‐dimethylacetamide solution. CONCLUSION: The results obtained show that the new PPAPE diamine can be considered as a good monomer to enhance the processability of its resultant aromatic polyamides while maintaining their high thermal stability. The observed characteristics of the polyamides obtained make them promising high‐performance polymeric materials. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
A series of novel copolyamides were synthesized by the direct polycondensation of 1,2‐dihydro‐2‐(4‐carboxyphenyl)‐4‐[3‐chloro‐4‐(4‐carboxyphenoxyl)phenyl]‐phthalazinone ( 1 ), terephthalic acid (TPA) with three commercial diamines. The inherent viscosities of the polyamides were between 0.82 and 1.86 dL/g. When the molar ratios of 1 and TPA were higher than 1 : 1, the polymers were soluble in some polar aprotic solvents such as N‐methyl‐pyrrolidone and N,N‐dimethyl acetamide etc. These polymers were amorphous with 10% weight loss temperatures in N2 above 490°C and their glass transition temperatures were above 269°C. Some films of the polymers were pale yellow and transparent with tensile strengths up to 147.8 MPa, initial modulus up to 2.56 GPa and elongations at break values up to 9.8%, which depended on the repeating unit structures. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
New fluorine‐containing, triphenylamine‐based diamine and dicarboxylic acid monomers, namely 3,5‐bis(trifluoromethyl)‐4′,4″‐diaminotriphenylamine and 3,5‐bis(trifluoromethyl)‐4′,4″‐dicarboxytriphenylamine, were synthesized and polymerized with commercially available aromatic dicarboxylic acids and diamines, respectively, leading to two series of aromatic polyamides, 5a–h and 7a–e . Most of the polyamides were amorphous and readily soluble in many common organic solvents and could be solution‐cast into transparent, flexible and strong films with good mechanical properties. The polyamides had useful levels of thermal stability associated with high glass transition temperatures of 273–305 °C and 10% weight‐loss temperatures in excess of 500 °C. Cyclic voltammograms of films of polymers 5a–h on indium–tin oxide‐coated glass substrates exhibited reversible oxidation redox couples with E1/2 around 1.15 V versus Ag/AgCl in tetrabutylammonium perchlorate/acetonitrile solution, accompanied by a color change from colorless neutral state to reddish brown oxidized state. The 7 series polymers displayed a higher oxidation potential and less electrochemical stability as compared to the 5 series analogues. © 2017 Society of Chemical Industry  相似文献   

4.
A series of polyamides were synthesized by the direct polycondensation of 2,2‐bis[4‐(4‐amino‐2‐fluorophenoxy)phenyl]hexafluoropropane with various commercially available dicarboxylic acids such as terephthalic acid, isophthalic acid, 5‐t‐butyl isophthalic acid, and 2,6‐naphthalene dicarboxylic acid. The synthesized polyamides were soluble in several organic solvents such as N,N‐dimethylformamide, N,N‐dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, and chloroform, and they exhibited inherent viscosities of 0.42–0.59 dL/g. The polyamides exhibited weight‐average molecular weights of up to 26,000, which depended on the exact repeating unit structure. These polyamides showed good thermal stability up to 440°C for a 10% weight loss in synthetic air. The polyamides synthesized from 5‐t‐butyl isophthalic acid and isophthalic acid exhibited glass‐transition temperatures of 217 and 185°C, respectively (by differential scanning calorimetry) in nitrogen. The polyamides synthesized from terephthalic acid and 2,6‐naphthalene dicarboxylic acid showed melting temperatures of 319 and 385°C, respectively. The polyamides films were pale yellow, with tensile strengths of up to 82 MPa, moduli of elasticity of up to 2.3 GPa, and elongations at break of up to 9%, which depended on the exact repeating unit structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 691–696, 2003  相似文献   

5.
A novel diamine monomer having pendant 4‐(quinolin‐8‐yloxy) aniline group was successfully synthesized via aromatic substitution reaction of 8‐quinolinol with p‐fluoronitrobenzene followed by Pd/C catalyzed hydrazine reduction, amidation reaction between 4‐(quinolin‐8‐yloxy) aniline and 3,5‐dinitrobenzoylcholoride followed by Pd/C catalyzed hydrazine reduction. The diamine monomer was fully characterized by using FTIR, 1H‐NMR, 13C‐NMR, and elemental analysis. The diamine monomer was polymerized with various aromatic and aliphatic dicarboxylic acids to obtain the corresponding polyamides. The polyamides had inherent viscosity in the range of 0.30–0.41 dL/g and exhibited excellent solubility in the polar aprotic solvents such as DMAc, NMP, N,N‐dimethylformamide, Pyridine, and DMSO. The glass transition temperatures (Tg) of the polymers are high (up to 313°C) and the decomposition temperatures (Ti) range between 200 and 370°C, depending on the diacids residue in the polymers backbone. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
A new copper‐containing Schiff‐base diamine, benzil bis(thiosemicarbazonato)copper(II) (CuLH4), was synthesized in two steps from benzil bisthiosemicarbazone (LH6). The ligand LH6 and the complex CuLH4 were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, and elemental analysis. CuLH4 was used to prepare novel polyamides. The low‐temperature solution polycondensation of the complex CuLH4 with various aromatic and aliphatic diacid chlorides afforded copper‐containing Schiff‐base polyamides with inherent viscosities of 0.25–0.36 dL/g in N,N‐dimethylformamide (DMF) and 0.75 dL/g in H2SO4 at 25°C. The polyamides were generally soluble in a wide range of solvents, such as DMF, N,N‐dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, ethyl acetate, tetrachloroethane, hexamethylene phosphoramide, N‐methylpyrrolidone, and pyridine. Thermal analysis showed that these polyamides were practically amorphous, decomposed above 270°C, and exhibited 50% weight loss at and above 400°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A series of aromatic polyamides containing 5‐(4‐acetoxy‐benzamido) pendent groups have been synthesized and their properties have been characterized and compared with those of related polyamides. The polyamides have weight‐ and number‐average molecular weights in the range of 36,680–65,700 and 12,685–35,490, respectively, and polydispersities in the range of 1.82–3.66. These polymers show good thermal stability comparable to traditional aromatic polyisophthalamides, with initial decomposition temperature between 270–320°C and glass transition temperature in the range of 230–270°C. Compared with related polyisophthalamides without any pendent groups, the present polymers show better solubility in certain solvents such as N‐methylpyrrolidinone and dimethylacetamide and can be cast from solutions into thin transparent flexible films having dielectric constants in the range of 3.42–4.27. The polymer films display remarkable hydrophilicity, which makes them potential candidates for use as advanced materials in humidity sensors. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 650–657, 2001  相似文献   

8.
A series of six new aromatic polyamides with side oxadiazole rings has been synthesized by polycondensation reaction of aromatic diamines containing pendent substituted oxadiazole groups with a silicon‐containing diacid chloride [namely, bis(p‐chlorocarbonyl‐phenylene)diphenylsilane] or with a fluorine‐containing diacid chloride [namely, hexafluoroisopropylidene‐bis(p‐benzoyl chloride)]. All polymers were easily soluble in amidic solvents, such as N‐methylpyrrolidinone and dimethylformamide, and gave thin transparent films by casting such solutions. Very thin coatings were deposited onto silicon wafers and exhibited smooth, pinhole‐free surfaces in atomic force microscopy investigations. The polymers showed high thermal stability, with decomposition temperature >400°C. Some of them did exhibit a glass transition, in the range 152–276°C, with a reasonable interval between glass transition and decomposition. Four of these polymers showed blue photoluminescence, in the range 460–480 nm, which makes them promising candidates for future use as high‐performance materials in the construction of light‐emitting devices. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 714–721, 2003  相似文献   

9.
In order to obtain polyamides with enhanced solubility and processability, as well as good mechanical and thermal properties, several novel polyamides containing sulfone‐ether linkages and xanthene cardo groups based on a new diamine monomer, 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene (BAPX), were investigated. The BAPX monomer was synthesized via a two‐step process consisting of an aromatic nucleophilic substitution reaction of readily available 4‐chloronitrobenzene with 9,9‐bis(4‐hydroxyphenyl)xanthene in the presence of potassium carbonate in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. Four novel aromatic polyamides containing sulfone‐ether linkages and xanthene cardo groups with inherent viscosities between 0.98 and 1.22 dL g?1 were prepared by low‐temperature polycondensation of BAPX with 4,4′‐sulfonyldibenzoyl chloride, 4,4′‐[sulfonyl‐bis(4‐phenyleneoxy)]dibenzoyl chloride, 3,3′‐[sulfonyl‐bis(4‐phenyleneoxy)]dibenzoyl chloride and 4,4′‐[sulfonyl‐bis(2,6‐dimethyl‐1,4‐phenyleneoxy)]dibenzoyl chloride in N,N‐dimethylacetamide (DMAc) solution containing pyridine. All these new polyamides were amorphous and readily soluble in various polar solvents such as DMAc and N‐methylpyrrolidone. These polymers showed relatively high glass transition temperatures in the range 238–298 °C, almost no weight loss up to 450 °C in air or nitrogen atmosphere, decomposition temperatures at 10% weight loss ranging from 472 to 523 °C and 465 to 512 °C in nitrogen and air, respectively, and char yields at 800 °C in nitrogen higher than 50 wt%. Transparent, flexible and tough films of these polymers cast from DMAc solution exhibited tensile strengths ranging from 78 to 87 MPa, elongations at break from 9 to 13% and initial moduli from 1.7 to 2.2 GPa. Primary characterization of these novel polyamides shows that they might serve as new candidates for processable high‐performance polymeric materials. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

11.
Two series of heterocyclic aromatic polymers were synthesized from 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthaltic anhydride) and 2,2′‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride by two‐step method. The inherent viscosities were in the range of 24–45 cm3/g. The effects of the rigid benzoxazole group in the backbone of copolymer on the thermal, mechanical, and physical properties were investigated. These polymers exhibit good thermal stability. The temperatures of 5% weight loss (T5) of these polymers are in the range of 403–530°C in air and 425–539°C in nitrogen. The chard yields of these polymers are in the range of 15–24% in air and 54–61% in nitrogen. These polymers also have high glass‐transition temperatures and a low coefficient of thermal expansion and good mechanical properties. The poly(benzoxazol imide) has a higher tensile strength and modulus than those of neat polyimide. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
A novel monomer diacid, 6,6′‐methylenebis(2‐oxo‐2H‐chromene‐3‐carboxylic acid), was synthesized and used in a direct polycondensation reaction with various aromatic diamines in N‐methyl‐2‐pyrrolidone solution containing dissolved LiCl and CaCl2, using triphenyl phosphite and pyridine as condensing agents to give a series of novel heteroaromatic polyamides containing photosensitive coumarin groups in the main chain. Polyamide properties were investigated by DSC, TGA, GPC, wide‐angle X‐ray scattering, viscosity, and solubility measurements. The copolymers were soluble in aprotic polar solvents, and their inherent viscosities varied between 0.49 and 0.78 dL g?1. The weight‐average and number‐average molecular weights, measured by gel permeation chromatography, were 27,500–43,900 g mol?1 and 46,500–66,300 g mol?1, respectively, and polydispersities in the range of 1.48–1.69. The aromatic polyamides showed glass‐transition temperatures (Tg) ranging from 283 to 329°C and good thermal properties evidenced by no significant weight loss up to 380°C and 10% weight loss recorded above 425°C in air. All the polyamides exhibited an amorphous nature as evidenced by wide‐angle X‐ray diffraction and demonstrated a film forming capability. Water uptake values up to 3.35% were observed at 65% relative humidity. These polymers exhibited strong UV‐vis absorption maxima at 357–369 nm in DMSO solution, and no discernible photoluminescence maxima were detected by exciting with 365 nm. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
It remains a problem to prepare cost‐effective aramid with good solubility via a simple method since the commercialization of aromatic polyamides such as Kevlar and Nomex by DuPont in 1960s. Herein, we report the facile preparation and properties of an aromatic polyamide copolymerized by 2,6‐naphthalene dichloride (26N‐COCl), 4,4′‐oxydianiline, and m‐phenylenediamine. The synthetic route is very facile and cost‐effective. The modified aramids possess excellent comprehensive properties. The polymers are soluble in some organics. Their thermal stabilities are excellent, with 5% weight loss temperatures (Td,5%'s) in air higher than 460 °C and glass transition temperatures (Tg's) higher than 280 °C. These polymers are easily processed into films, fibers, and tubes. The products exhibit high strength. For example, the films have excellent mechanical strength, with a tensile strength up to 139 MPa, a tensile modulus up to 3.45 GPa, and an elongation of 11%. The films are also transparent and fluorescent. The overall properties are better than those of the commercial Nomex. The facilely prepared aramids with good solubility are very promising for commercial use. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46341.  相似文献   

14.
A new aromatic diamine, 2,3‐bis(4‐(4‐amino‐2‐(trifluoromethyl) phenoxy)phenyl)naphtho[2,3‐f]quinoxaline‐7,12‐dione, was synthesized and fully characterized by using FTIR, 1H and 13C NMR, DEPT technique, and elemental analysis. A series of novel fluorescent anthraquinone‐quinoxaline containing polyamides (PAs) with inherent viscosities of 0.39–0.62 dL/g was prepared by direct polycondensation of the diamine with various dicarboxylic acids. These PAs were readily soluble in many polar aprotic organic solvents and could be solution‐cast into tough and flexible films. The PAs exhibited glass transition temperatures (Tg)s between 230 and 323°C, and 10% weight loss temperatures in the range of 362–433°C in N2. All of the PAs have fluorescence emission in solution and in solid state with maxima around 452–510 nm and with the quantum yields in the range of 6–17%. Also, cyclic voltammetry (CV) method was used to study the electrochemical oxidation behavior of these polymers at the surface of a modified multiwalled carbon nanotube (MWCNT)s glassy electrode. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Poly(arylene ether nitriles) (PEN) with pendant phthalonitrile groups (PEN? CN) were obtained via the Yamazaki‐Higashi phosphorylation route of 4‐(4‐aminophenoxy)phthalonitrile (APN) with acid‐contained PEN (PEN? COOH) in the presence of CaCl2. The chemical structure and molecular weight of PEN? CN were characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and Gel permeation chromatography. The synthesized PEN? CN had superior solubility in polar organic solvent and can be easily processed into thin films from the solutions of N‐methylpyrrolidone, dimethylsulfoxide, N,N′‐dimethylformamide, dimethylacetamide, and tetrahydrofuran. Compared with PEN? COOH, PEN? CN showed higher thermal stability with 5% weight loss temperatures (T5%) up to 430°C. The glass transition temperature of PEN? CN was improved from 211 to 235°C measured by differential scanning calorimetry (DSC). In addition, it also exhibited excellent mechanical properties that Young's modulus reached to 3.5 GPa. Meanwhile, the effects of different aromatic amines and Lewis acid on the crosslinking behavior of PEN? CN were investigated by DSC. The results indicated that anhydrous Zinc chloride (ZnCl2) was the best catalyst to lower the curing temperature among 2,6‐bis(4‐diaminobenzoxy) benzonitrile, 4,4‐diaminediphenyl sulfone, APN and ZnCl2. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Poly(aryl thioether)s (F‐PTEs) containing 2,3,5,6‐tetrafluoro‐1,4‐phenylene moiety and polar moiety, such as 1,3,4‐ozadiazole, ether ketone, and amide groups, were synthesized by nucleophilic aromatic substitution reaction of aryl fluorides and 4,4′‐thiobisbenzenthiol. F‐PTEs were amorphous with good thermal properties including high glass transition temperature (Tg) and thermal stability, solubility, and hydrophobicity. F‐PTEs were transformed into poly(aryl sulfone)s (F‐PSs) by the oxidation reaction with hydrogen peroxide in acetic acid. Because of the sulfone group, the Tgs of the F‐PSs were 30–40°C higher than those of the corresponding F‐PTEs. F‐PSs maintained solubility in polar aprotic solvents and exhibited hydrophobicity in spite of the content of polar sulfone groups due to the highly substituted fluorine atoms. These F‐PTEs and F‐PSs were a new class of high‐performance polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Several new polyamides were synthesized by direct polycondensation of the 1,3-bis[4-(4-aminophenoxy)phenyl]adamantane ( I ) with various dicarboxylic acids. The polyamides had inherent viscosities and number-average molecular weights (Mn) of 0.46–0.96 dL/g and 28,000–109,000, respectively. All polyamides III had good solubilities and were soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and pyridine. Polyamides had tensile strengths of up to 72.3 MPa, elongation to breakage values of up to 10.2%, and initial modulus of up to 2.1 GPa. Their glass transition temperatures were found to be 228–269°C and 252–307°C using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA), respectively. The melting temperature of IIIf was observed at 318°C using DSC. The temperatures of polyamides III at a 5% weight loss ranged from 395 to 435°C in air and from 400 to 450°C in a N2 atmosphere. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:315–321, 1998  相似文献   

18.
In the development of processable high‐temperature materials, six new aromatic poly(imide)s based on diamines containing ortho trifluoromethyl groups, ether linkages and R,R‐methylenes moieties (R = Me or Ph) and previously reported dianhydrides have been synthesized vía polycondensation reactions. All polymers were obtained with good yields, were soluble in a variety of polar aprotic solvents, and exhibited inherent viscosity (ηinh) values between 0.15 and 0.20 dL g?1, which is indicative of low molecular‐weight species. Preliminary studies of their physical properties were carried out. The new materials were transparent in the visible region and they exhibited thermal decomposition temperatures ranging from 475 to 545 °C and glass‐transition temperatures varying from 288 to 304 °C. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46613.  相似文献   

19.
2,7‐Dibromo‐9,9‐dioctylfluorene was synthesized by a two‐step reaction from fluorene and n‐octylboromide. This was reacted with benzamide for the preparation of a model compound and with terephthalamide, isophthalamide, and adipamide for the preparation of polyamides in the presence of a mixture of 10 mol % CuI and 20 mol % N,N′‐dimethylethylenediamine as a catalyst and K2CO3 as a base. The monomer and the model compound were characterized with Fourier transform infrared, proton nuclear magnetic resonance, and elemental analysis. The prepared polyamides were characterized with Fourier transform infrared, proton nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and solubility and viscosity measurements. The obtained polyamides possessed excellent solubility in common organic solvents, and they exhibited inherent viscosities in the range of 0.93–1.19 dL/g. According to the differential scanning calorimetry analysis, the glass‐transition temperatures of the polyamides were in the range of 84–154°C. Thermogravimetric analysis indicated that a 2% weight loss of the polyamides occurred in the temperature range of 218–253°C under a nitrogen atmosphere. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
A series of novel aromatic poly(ester‐ether‐imide)s with inherent viscosity values of 0.44–0.74 dL g?1 were prepared by the diphenylchlorophosphate‐activated direct polycondensation of an imide ring‐containing diacid namely 5‐(4‐trimellitimidophenoxy)‐1‐trimellitimido naphthalene ( 1 ) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. Owing to comparison of the characterization data, an ester‐containing model compound ( 2 ) was also synthesized by the reaction of 1 with phenol. The model compound 2 and the resulted polymers were fully characterized by FT‐IR and NMR spectroscopy. The ultraviolet λmax values of the poly(ester‐ether‐imide)s were also determined. The resulting polymers exhibited an excellent organosolubility in a variety of high polar solvents such as N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethyl sulfoxide, and N‐methyl‐2‐pyrrolidone. They were soluble even in common less polar organic solvents such as pyridine, m‐cresol, and tetrahydrofuran on heating. Crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resulted polymers exhibited nearly an amorphous nature. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 221 and 245°C. Thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis, and the 10% weight loss temperatures of the poly(ester‐ether‐imide)s were found to be over 410°C in nitrogen. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号