首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
完成了聚丙烯纤维(PPF)体积掺量分别为0、0.1%、0.2%和0.3%的活性粉末混凝土(RPC)经20~900℃后的力学性能试验,包括70.7 mm×70.7 mm×70.7 mm立方体受压试验、70.7 mm×70.7 mm×228.0 mm棱柱体受压试验、40 mm×40 mm×160 mm棱柱体受折试验和“8”字形试件轴心受拉试验。考察了PPF对RPC高温爆裂的抑制效果,分析了PPF掺量和经历温度对RPC高温后力学性能(残余立方体抗压强度、残余轴心抗压强度、残余抗折强度和残余轴心抗拉强度)的影响。结果表明:PPF体积掺量0.1%和0.2%时对RPC高温爆裂的抑制作用不明显,体积掺量0.3%时可以防止RPC发生爆裂;常温下PPF的掺入对RPC力学性能有不利影响,经历温度高于200℃时,随PPF掺量的增大高温后RPC力学性能相应提高;掺PPF的RPC高温后残余抗压强度、残余抗折强度和残余轴心抗拉强度均随经历温度的升高先增大后减小,3种强度的临界温度分别为300℃、300℃和120℃。根据试验统计数据建立了高温后PPF体积掺量不同的RPC残余抗压强度、残余抗折强度和残余轴心抗拉强度随温度变化的计算式。  相似文献   

2.
通过复掺纤维的活性粉末混凝土(RPC)高温试验,研究了复掺纤维的活性粉末混凝土高温物理变化及力学性能变化规律。试验结果表明,随着温度增加,RPC表观颜色经历青灰色→微褐色→棕褐色→深褐色→灰褐色→灰白色的变化,表观裂缝数量由少量→较多→大量,此物理变化可为RPC结构火灾现场过火温度判断提供参考。随着温度的升高,复掺纤维的RPC抗压强度、抗拉强度、抗折强度均先增大后降低,其中,抗压强度、抗拉强度、抗折强度的临界温度分别为300℃、100℃、100℃。钢纤维、聚丙烯纤维的复合掺入有效提高了RPC高温后相对抗压强度、相对抗拉强度、相对抗折强度,钢纤维掺量为2%、聚丙烯纤维掺量为0.1%时,RPC有着较好的抗压、抗拉、抗折强度,同时RPC高温力学性能得到增强。  相似文献   

3.
通过测定高温作用后5种不同纤维掺量的混杂纤维(聚丙烯纤维和钢纤维)活性粉末混凝土( reactive powder concrete,RPC)残余抗压强度、残余劈裂抗拉强度及残余断裂能等力学性能,研究了混杂纤维RPC受高温作 用后残余力学性能特征.试验结果表明,聚丙烯纤维体积掺量为0.15%、钢纤维体积掺量为2%是改善高温残余力学性能的最佳体积掺量.纤维掺量不同的混杂纤维RPC,经不同高温作用后表面特征和残余力学性能的变化规 律均基本一致.随着温度升高,残余抗压强度先明显增长,再缓慢增长,直至不增长,最后明显下降,残余劈裂抗拉强度随着温度升高先略有下降或几乎不变,再较明显下降,最后大幅度下降;残余断裂能随着温度升高先略有提高(几乎不变),再较明显下降,最后大幅度下降.劈裂抗拉强度对高温造成的孔粗化效应和微裂纹更为敏感,抗压强度则敏感性较小,断裂能则介于抗压强度、劈裂抗拉强度二者之间.  相似文献   

4.
刘晓仙  杜红秀  徐瑶瑶 《混凝土》2021,(1):87-90,97
为了提高活性粉末混凝土(RPC)的力学性能并改善其高温爆裂性,在RPC中将0.3%、0.4%聚丙烯纤维(PP)和0、1%、2%、3%钢纤维(S)组合复掺,共设计8组试件,养护并模拟火灾试验,统计试件在高温(200、400、600℃)作用下的爆裂情况,研究复掺纤维对高温后RPC的抗折和抗压强度、强度损失率、折压比的影响,抗压强度、受火温度与超声波速的规律,确定两种纤维的最佳配合比。结果表明:掺入PP可以改善RPC高温爆裂;RPC抗折、抗压强度、折压比及超声波速随受火温度升高均呈先上升再下降的趋势,复掺入S可提升RPC的抗压、抗折强度和折压比;当S与PP掺量分别为1%与0.3%、2%、0.4%时,RPC未爆裂且强度较高,超声波速与抗压强度的相关性也较高。  相似文献   

5.
《混凝土》2016,(5)
为探究不同纤维种类对活性粉末混凝土抗压力学性能的影响,基于试验对不同养护方式下掺加钢纤维(掺量0、1%、2%、3%)、聚丙烯纤维(0、0.1%、0.2%、0.3%)、碳纤维(0、0.5%、1%、1.5%)的RPC抗压力学性能展开研究,养护方式包括标准养护、热水养护、蒸汽养护三种。结果表明,钢纤维及碳纤维的掺入有利于提高RPC抗压强度,对RPC的脆性破坏也有所改善,聚丙烯纤维掺量对RPC抗压强度影响较小。随着不同纤维掺量的增加,RPC流动性及和易性均不断降低,综合RPC力学及施工性能因素,建议实际工程中RPC钢纤维掺量取为1%~3%、碳纤维掺量取为0.5%~1%。  相似文献   

6.
通过对超高性能混凝土进行高温加热和高温作用后立方体抗压强度试验,研究了超高性能混凝土高温作用后的表观特征、质量损失及力学性能。对比了单掺钢纤维、单掺聚丙烯纤维和混掺钢纤维和聚丙烯纤维对超高性能混凝土高温爆裂的抑制效果,考察了温度、纤维种类和掺量、骨料(石英砂和钢渣)对超高性能混凝土强度的影响。试验结果表明:混掺1%钢纤维和2%聚丙烯纤维能有效抑制超高性能混凝土高温爆裂,在高温作用后依旧保持完整形态;钢渣骨料混杂纤维超高性能混凝土具有优异的高温力学性能,在1 000℃高温作用后仍能保持67%的残余强度;随着温度的升高,超高性能混凝土立方体抗压强度整体上表现出先升高后降低的规律;在目标温度超过600℃时,高温增强了超高性能混凝土的延性。  相似文献   

7.
进行了钢纤维与聚丙烯纤维掺量及其混杂对高性能混凝土抗压强度和劈拉强度的试验研究,探讨了不同混杂纤维组合对高性能混凝土基体力学性能的影响规律。结果表明,钢-聚丙烯纤维混凝土的抗压强度、劈裂抗拉强度及其纤维增强系数与钢纤维和聚丙烯纤维掺量及混杂比密切相关。钢纤维掺量较低时,抗压强度随聚丙烯纤维掺量增加先减小后增加;钢纤维掺量较大时,抗压强度随聚丙烯纤维掺量的增加一直增大;当钢纤维掺量一定时,劈裂抗拉强度随聚丙烯纤维掺量的增加先增大后减小。当钢纤维和聚丙烯纤维掺量分别为3%、0.3%时,混杂效应系数最大。  相似文献   

8.
对活性粉末混凝土(RPC)立方体试件高温后抗压强度进行了测试,探讨了钢纤维掺量对RPC爆裂性能及抗压强度的影响。结果表明,钢纤维可以有效提高RPC常温及高温后的抗压强度,2%~3%的钢纤维掺量可以有效防止RPC在较高温度下发生爆裂。20~300℃时,RPC高温后抗压强度随着温度的升高不断提高,最大增幅可达24.55%;300~800℃时,RPC高温后抗压强度随着温度的升高不断降低,经受800℃高温的RPC最低残余强度仅为19.2%。基于试验结果,通过回归分析给出了钢纤维掺量为2%~3%的RPC高温后抗压强度计算公式。  相似文献   

9.
网状聚丙烯纤维和PVA纤维对高性能混凝土高温性能的影响   总被引:1,自引:0,他引:1  
本文研究了含湿量和纤维对高性能混凝土高温爆裂和高温后残余力学性能的影响。研究结果表明,含湿量是影响高性能混凝土高温爆裂的主要因素。高性能混凝土发生爆裂的温度范围是350~450℃,爆裂的临界含湿量为63%~75%。试件含湿量越高,试件爆裂的频率和损伤程度越大。单掺体积分数为0.05%的网状聚丙烯纤维或PVA纤维即可防止高性能混凝土发生高温爆裂,纤维掺量越高,高性能混凝土高温损伤程度越小。单掺网状聚丙烯纤维和PVA纤维改善了高性能混凝土高温后残余抗压强度、残余劈拉强度和残余断裂能。  相似文献   

10.
《工业建筑》2021,51(7):151-155
通过制备8种不同纤维掺量的聚丙烯纤维再生砖混凝土(PFRB混凝土)进行单因素试验,分析纤维掺量对其力学性能(立方体抗压强度、轴心抗压强度和劈裂抗拉强度)的影响,得到了立方体抗压强度和轴心抗压强度、立方体抗压强度和劈裂抗拉强度之间的关系式,并建立了不同纤维掺量下PFRB混凝土受压应力-应变全曲线方程。试验发现:随着纤维掺量增大,PFRB混凝土的轴心抗压强度、立方体抗压强度和劈裂抗拉强度均先增加后降低,并且都在纤维掺量为0.1%时达到最大。  相似文献   

11.
为了研究聚丙烯纤维对橡胶混凝土工作性能及力学性能的影响,选取橡胶置换率5%和25%的混凝土作为基础试验,按纤维掺量为0、0.3、0.6、0.9、1.2 kg/m~3掺入聚丙烯纤维,研究掺入纤维后混凝土的工作性能及基本力学性能并给出各工作及力学性能与纤维掺量的经验计算式,试验结果表明:橡胶混凝土的坍落度随纤维的增加而显著降低;抗压强度随纤维的增加先升高后降低;劈裂抗拉强度、抗折强度、拉压比和折压比均随纤维的增加而升高。综合考虑橡胶混凝土的工作性能及力学性能,建议聚丙烯纤维的掺量小于1.2 kg/m~3。就研究结果,聚苯乙烯纤维的最佳掺量为0.9 kg/m~3。  相似文献   

12.
为使废旧的布料纤维在聚苯颗粒(EPS)混凝土的工程结构中得到有效应用,研究了布料纤维对EPS混凝土力学性能的影响。试验测试了不同掺量的布料纤维(聚丙烯网状纤维、聚丙烯腈纤维、聚酯纤维)EPS混凝土抗压强度、劈裂抗拉强度及抗折强度,分析其微观结构。结果显示:混凝土的强度随着EPS替代率的增加而降低。聚酯纤维的掺入能有效提高EPS混凝土的抗压强度、劈裂抗拉强度及抗折强度。聚丙烯网状纤维、聚丙烯腈纤维可以提高EPS混凝土的劈裂抗拉强度及抗折强度,而对抗压强度均有所降低。聚酯纤维的掺量为1.6、1.3 kg/m3,其EPS混凝土的抗压强度和劈裂抗拉强度达到最大值,比对照组分别提高了16.67%、12.18%。EPS混凝土的抗折强度在聚丙烯网状纤维的掺量为1 kg/m3取得最大值,高出对照组22.56%。  相似文献   

13.
含湿量和纤维对高性能混凝土高温性能的影响   总被引:4,自引:0,他引:4  
研究了含湿量和纤维对高性能混凝土高温爆裂及高温后残余抗压强度的影响.结果表明:在320~440℃范围内,高性能混凝土易发生爆裂,爆裂的频率和损伤程度随混凝土试件内部含湿量的上升而加大.单掺最小体积分数为0.1%的聚丙烯纤维能够减少甚至消除混凝土爆裂的发生,而以特定掺量混掺聚丙烯纤维和钢纤维则既能有效改善混凝土的抗爆裂性能,又能提高混凝土的残余抗压强度.  相似文献   

14.
研究了不同掺量的钢纤维和聚丙烯纤维对再生混凝土的轴心抗压强度、劈裂抗拉强度、抗折强度、弹性模量的影响。并给出了各个力学性能与纤维掺量的经验公式。试验结果表明:钢纤维和聚丙烯纤维的掺入对再生混凝土轴心抗压强度、劈裂抗拉强度、抗折强度及弹性模量均有不同程度提高,其中对劈裂抗拉强度的提升最为显著,对轴心抗压强度的提升不明显,对弹性模量的影响较小。钢纤维掺量为2%时,劈裂抗拉强度、抗折强度分别提高44.8%、34.0%,钢纤维掺量为1.5%时,轴心抗压强度、弹性模量分别提高19.4%、10.5%。聚丙烯纤维掺量为0.8 kg/m3时,轴心抗压强度、劈裂抗拉强度、抗折强度、弹性模量分别提高15.8%、40.5%、39.6%、7.7%。  相似文献   

15.
通过对掺与不掺聚丙烯纤维的高强混凝土进行不同高温作用后的劈裂抗拉强度、抗压强度试验研究,探讨高强混凝土劈裂抗拉强度、拉压比随温度变化的规律。研究结果表明,随着温度的升高,混凝土中的凝胶体不断分解,内部结构不断破坏,高温后高强混凝土脆性增大,劈裂抗拉强度降低;与未掺纤维的高强混凝土相比,相同温度作用后掺有聚丙烯纤维的高强混凝土劈裂抗拉强度略有提高,并借助X射线衍射(XRD)试验,分析高温作用前后高强混凝土内部成分的变化,初步揭示高温对混凝土力学性能影响的机理。  相似文献   

16.
高温后聚丙烯纤维高强混凝土力学性能试验研究   总被引:1,自引:0,他引:1  
通过对高温后聚丙烯纤维高强混凝土和素高强混凝土力学性能的试验研究,探讨了聚丙烯纤维高强混凝土的抗压强度、抗拉强度和抗折强度在不同温度下的变化规律,分析了聚丙烯纤维高强混凝土的抗爆裂机理.研究结果表明,聚丙烯纤维高强混凝土的抗压强度、抗拉强度和抗折强度随温度的升高而降低,在400℃以内降低幅度较小,400℃以后显著降低.聚丙烯纤维能够显著改善高强混凝土的抗爆裂性能.  相似文献   

17.
为了研究玄武岩-聚丙烯混杂纤维活性粉末混凝土的应力-应变关系,对制作的9组RPC试件进行了受压应力-应变全曲线试验。分析了不同纤维掺量下应力-应变曲线特征及轴心抗压强度和峰值应变随纤维掺量的变化规律。结果表明:总体上看当玄武岩纤维一定时,随着聚丙烯纤维掺量的增加RPC轴心抗压强度与峰值应变均先增加后减小。当玄武岩纤维掺量为0.15%,聚丙烯纤维掺量为0.033%时抗压强度达到最大值,此时达到最佳纤维掺量。依据试验结果得出混杂纤维RPC峰值应变与轴心抗压强度近似呈线性关系;同时根据试验曲线推导拟合得出了混杂纤维RPC轴心受压应力-应变曲线方程,拟合曲线与试验曲线能较好吻合,验证了拟合公式的合理性,可为工程应用提供参考。  相似文献   

18.
孙磊  杜红秀 《混凝土》2022,(10):34-37
为探究冷却方式对混掺纤维RPC高温后强度损伤的影响,对混掺聚丙烯纤维和玄武岩纤维的RPC试件进行高温处理,研究其在自然冷却和喷水冷却两种方式下力学性能、超声波速与受火温度的关系,结果表明:随受火温度升高,RPC的抗压强度、抗折强度、超声波速呈下降趋势,平均孔径、孔隙率呈上升趋势;相同受火温度下,自然冷却后RPC抗压强度、抗折强度、超声波速均高于喷水冷却后的相应值,平均孔径和孔隙率有所降低;随着聚丙烯纤维掺量的增加,高温后RPC抗折强度呈上升趋势,抗压强度及超声波速呈下降趋势;玄武岩纤维可改善RPC力学性能。  相似文献   

19.
确定无纤维或低纤维掺量的不同强度等级混凝土的爆裂临界温度,以及防止火灾时不同强度混凝土爆裂所需聚丙烯(PP)纤维或钢纤维最小掺量,对混凝土结构抗火设计具有重要意义。为此,对国内外大量高温爆裂试验研究结果进行分析,获得了爆裂临界温度与混凝土抗压强度(23~238MPa)的关系曲线,发现混凝土抗压强度越高,爆裂临界温度越低。通过大量试验数据拟合得到了防爆裂PP纤维掺量、钢纤维掺量与混凝土抗压强度的关系曲线,发现随着混凝土抗压强度的提高,所需防爆裂PP纤维掺量呈线性增长,而所需防爆裂钢纤维掺量呈指数增长。按EN 1992-1-2:2004《欧洲混凝土抗火设计规范》建议值,PP纤维掺量为0.22%的防爆裂混凝土,火灾下仍可能发生爆裂;按所提出计算式计算的掺量,则可有效降低火灾下混凝土爆裂的风险。  相似文献   

20.
李卫文  袁小玲  高波  樊亚男 《混凝土》2022,(2):51-53+59
为了准确评估活性粉末混凝土(RPC)高温后的劣化损伤程度,采用力学性能试验和超声无损检测两种方式,探究不同体积掺量玄武岩纤维RPC高温后质量损失率、抗压强度和超声波速。试验结果表明:RPC高温后抗压强度、超声波速与受火温度呈反比;400~600℃时RPC抗压强度损失率、超声波速损失率最大增幅可达16.18%、23.2%;玄武岩纤维最大可增加RPC高温后超声波速19%、抗压强度11.6%。掺0.2%掺量玄武岩纤维RPC高温后剩余超声波速、抗压强度最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号