首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大型光电经纬仪速度环PID参数模糊自整定研究   总被引:1,自引:0,他引:1  
为了使大型经纬仪在跟踪快速目标时具有较高的响应速度和较强的抗干扰能力,同时在跟踪低速目标时具有较好的平稳性和较高的精度.在传统伺服控制器双闭环的结构基础上,利用模糊控制理论将伺服控制的速度环调节器设计为模糊PID控制器,同时将位置环设计为传统的一阶调节器.讨论了速度环模糊PID控制器的结构和PID参数的整定方法,在设计中比例系数KP、微分系数KD用模糊方法进行自整定,而积分参数KI采用固定参数,并在MATLAB中对该模糊PID控制器进行了仿真研究,对比了模糊PID控制器与传统PID控制器的性能指标和抗干扰能力.实验结果表明:模糊PID控制器具有自整定参数的能力,并且跟踪性能远远优于传统PID控制器.在实际项目中对所设计的模糊PID控制器进行了应用,在对经纬仪进行最大速度20°/s最大加速度5°/s2的正弦引导时测得最大误差仅为0.6".在对经纬仪进行速度为15"的等速引导时系统运行平稳,实际测得速度与引导速度的均方根误差仅为0.63".  相似文献   

2.
电火花成型机主轴的驱动系统一般采用旋转电机+滚珠丝杠机构,其结构特性导致线速度、加速度及定位精度均有限.在一些极端加工条件下,可能出现排屑困难,导致无法满足超高速、超精密电火花加工需求.针对上述问题,设计了直线电机直接驱动系统,提出了一种前馈型模糊二自由度PID(two Degree Of Freedom-PID,2DOF-PID)控制器结构.建立了电机矢量控制系统的数学模型,设计了模糊2DOF-PID速度控制器.通过模糊规则实时调整2DOF-PID参数,采用该控制器的直线电机控制系统不仅能使跟踪能力和抗干扰能力同时达到最优,且能够满足主轴快速平稳的换向要求.仿真结果显示,模糊2DOF-PID速度控制器的响应速度是传统PID控制器的3.7倍;在受到外部突加扰动时,模糊2DOF-PID速度控制器的速度波动量仅为传统PID控制器的1/8,能较好适用于电火花成型加工.  相似文献   

3.
快速刀具伺服分数阶PID控制仿真的研究   总被引:2,自引:0,他引:2  
利用分数阶PID控制,提出了一种新的快速刀具伺服(FTS)跟踪控制方法,以改善FTS的控制性能。根据差分进化算法,讨论了分数阶PID控制器的参数整定;通过数值仿真,考察了该方法的可行性和有效性。针对FTS的轨迹跟踪,根据响应时间、跟踪精度等指标,详细比较了分数阶PID控制与传统PID控制的性能。仿真结果表明,分数阶PID控制器的阶跃响应时间约为5×10-7s,是PID控制响应时间的42%,对频率为1 kHz,幅值为1μm的正弦信号的跟踪误差约为6 nm,是PID跟踪误差的50%,验证了基于分数阶PID控制器实现FTS轨迹跟踪控制的可行性和优越性。  相似文献   

4.
为进一步提高传统变结构自抗扰控制器的控制精度,增强永磁伺服驱动系统的抗干扰能力,提出一种改进变结构自抗扰控制策略。该方法在基于变结构原理设计的扩张状态观测器中引入位置、速度的观测误差以实现状态变量的无差估计,采用基于指数趋近律设计的非线性状态误差反馈控制律实现线性控制与非线性控制的平滑过渡,并在此基础上引入位置跟踪误差,提高伺服系统的跟踪性能。通过实验分析比较了改进变结构自抗扰控制与传统变结构自抗扰控制两种控制策略,结果显示改进控制策略较传统控制策略的位置跟踪误差减少了约30%。当负载突变时,传统控制策略的跟踪误差约为负载突变前最大跟踪误差的3.4倍,而改进变结构自抗扰控制策略仍能准确跟踪给定信号。  相似文献   

5.
针对交流伺服系统提出了模糊自适应控制方案,将模糊控制器和PID控制器结合在一起,进一步完善了PID控制器的性能,实现了PID控制器参数在线调整.仿真结果表明:参数自适应模糊PID控制器提高了控制精度和快速跟踪能力,抗干扰能力强,具有较强的鲁棒性.  相似文献   

6.
轮式移动机器人的模糊轨迹跟踪控制   总被引:3,自引:0,他引:3  
文章针对实际的轮式移动机器人轨迹跟踪控制问题提出了一种解决方法。利用模糊控制器实现对移动机器人的轨迹控制,并进行了计算机仿真和实际的轮式移动机器人的轨迹控制实验,将控制效果与传统的PID控制器的控制结果进行比较,结果表明了模糊控制在机器人轨迹跟踪问题上具有很好的性能。  相似文献   

7.
吴上生  任帅康 《机械设计与制造》2022,374(4):174-177+182
根据不干胶标签印刷机运动特点和控制精度要求,采用无轴同步传动替代传统机械传动结构,设计以运动控制器、伺服驱动、伺服电机和触摸屏为硬件平台的印刷机控制系统。针对经典PID控制不能满足印刷机高精度套印的问题,提出带前馈补偿PID控制和模糊PID控制,模糊PID控制能够实时在线修正参数,同时用MATLAB仿真模糊PID控制。通过分析实验数据,表明模糊PID控制偏差更小、稳定性更好,当印刷速度达到18000张/h时,套印误差仍保持在0.05mm内,控制系统满足不干胶标签印刷机控制要求。  相似文献   

8.
针对传统PID控制器的一些问题,介绍一种基于PID参数模糊自整定的方法,并利用LabVIEW的模糊逻辑工具箱设计了虚拟模糊参数自整定PID调节器。运行结果表明,该控制器具有较强的抗干扰能力和鲁棒性,有较好的动、静态控制精度。  相似文献   

9.
针对传统PID控制方法在对Buck电路进行控制时精度低、抗干扰能力差等缺点,提出了一种基于模糊PID双模控制的闭环调节系统。采用数学工具Matlab为仿真软件,通过传统PID以及模糊PID两种方法调节Buck电路脉宽来实现调压。首先介绍了buck电路,对buck电路进行了传统PID闭环控制的仿真;然后进行了模糊PID双模控制器的系统设计和仿真;最后对传统PID控制和模糊PID双模控制的仿真结果进行了比较,得出结果:模糊PID双模控制算法使Buck电路具有更好的抗干扰能力和精度。  相似文献   

10.
为解决电液伺服阀控非对称缸系统在进行对称运动时由于液压缸的非对称性带来的控制非对称问题,提出一种含补偿因子的双模糊控制算法。以电液伺服阀控非对称缸系统为对象,针对非对称液压缸在两个运动方向上动态特性的非对称性问题,采用含补偿因子的模糊控制器进行补偿。同时,针对负载力大范围变化的特点,采用模糊PID控制算法来适应负载的变化。模糊PID控制器及含补偿因子的模糊控制器以经过跟踪微分器处理的误差及误差的微分作为输入,模糊PID控制器输出为PID控制器各项系数,含补偿因子的模糊控制器输出为补偿因子,结合模糊PID控制器,形成有效解决非对称液压缸非对称性问题的控制方法。仿真和试验结果表明,提出的控制方法能够有效解决电液伺服阀控非对称缸系统的控制非对称性问题,并拥有良好的控制效果。  相似文献   

11.
针对特种车辆在行驶过程中车身稳定性要求,设计了一种基于模糊PID的电液位置伺服控制系统作为车辆主动悬架的伺服作动器。根据电液位置伺服系统的物理结构和工作特点,推导出系统各个环节的传递函数。利用MATLAB/Simulink仿真分析系统的动态响应与信号跟踪能力,分析闭环系统负载变化时的单位阶跃响应曲线、不同频率下的正弦波输入输出曲线。结果表明,基于PID和模糊PID控制的电液位置系统的单位阶跃响应最大超调量分别为19.5%和0,调节时间分别为251 ms和117 ms。当负载质量变化时,基于PID控制的系统的单位阶跃响应存在明显波动,而模糊PID控制的系统的单位阶跃响应基本没有变化。当分别输入不同频率的正弦波信号时,模糊PID控制的系统的跟踪性能和稳态误差都明显优于PID的控制效果。因此,模糊PID控制下的电液位置伺服系统实现了不同负载质量下的位置控制输出以及不同频率下系统的跟踪性能,满足系统的稳定性与快速性要求。  相似文献   

12.
对电液比例阀控缸位置系统的模糊自适应PID控制器进行设计与研究。通过实验对模糊自整应PID控制与经典PID控制在正弦信号的跟踪精度与稳定性方面进行比较,实验结果表明模糊自整应PID控制器相较于传统PID控制是一种性能更加优异的控制器,可以广泛应用于工业控制领域。  相似文献   

13.
模糊自适应PID控制的仿真研究   总被引:1,自引:0,他引:1  
首先介绍了PID控制系统的工作原理,因PID控制器结构简单、实现简单,控制效果良好,所以已得到广泛应用。但当控制对象变化时,控制器的参数难以自动调整。为了使控制器具有较好的自适应性,可以采用模糊控制理论的方法来实现控制器参数的自动调整。模糊PID控制系统就是模糊理论与传统的PID控制器的结合。最后以一控制对象为例,对该两种方式的控制进行了仿真和比较,并得出了相应的结论。  相似文献   

14.
直流电机是一种多变量、非线性的复杂系统,为提高直流电机转速系统的动、静态性能,采用了传统PID控制、滞后补偿控制和模糊PID控制三种控制方法。在MATLAB仿真环境中建立直流电机转速系统模型,分别加入PID控制器、滞后控制器和模糊PID控制器,设置参数后,响应曲线达到期望值且得到最优响应。为测试系统的抗干扰能力,分别在PID控制、滞后补偿控制和模糊PID控制系统仿真2 s时加入阶跃扰动,三种控制方法具有抗干扰性,能恢复到期望稳定状态。仿真结果显示,加入三种控制器后,系统的调整时间、超调量减小,稳态误差降低,抗干扰能力得到增强。其中,模糊PID控制比传统PID控制、滞后补偿控制具有更小的调整时间和超调量。由此可见,模糊PID控制对直流电机转速能够达到良好的控制效果,具有一定的参考价值。  相似文献   

15.
液压马达驱动机床主轴系统具有参数时变和高度非线性,传统PID控制器控制精度不高。针对液压马达驱动机床主轴系统速度控制问题,采用模糊自整定PID控制器实现液压马达驱动机床主轴系统的有效控制,并对控制效果进行仿真验证。构造了液压马达驱动机床主轴系统模型简图,建立了液压马达驱动机床主轴系统数学模型。对传统PID控制器参数,用模糊控制器进行实时整定,开发了模糊自整定PID控制器。最后,采用MATLAB对液压马达驱动机床主轴系统进行仿真。同时,与传统PID控制器的计算结果进行对比和分析。仿真结果显示:采用模糊自整定PID控制器的液压马达驱动机床主轴转速超调量小,具有更快的响应时间,跟踪精度高,同时系统能耗减少20%左右;即使受到较大随机干扰,模糊自整定PID控制器也能快速消除干扰,使机床主轴转速处于受控状态。采用模糊自整定PID控制器可以有效提高液压马达驱动机床主轴系统的动态稳定性以及抗干扰能力。  相似文献   

16.
为解决直线伺服固有时滞特性对轨迹跟踪性能的影响,以典型的前馈加反馈二自由度控制结构为基础,分析直线伺服时滞特性对其轨迹跟踪精度的影响。在此基础上设计了前馈环节上的时滞控制器,之后针对时滞控制器位于前馈通道时作为一个超前环节控制上无法实现的问题,将时滞参数分为两部分,分别调节理想轨迹指令按照整数倍伺服周期延时及前馈控制信号滤波延时以达到时滞补偿的目的,引入牛顿迭代寻优进行最优时滞参数辨识。仿真与试验结果表明,在前馈加反馈二自由度控制的基础上加入时滞控制器可以有效减小直线伺服系统的闭环位置跟踪误差,特别是显著减小非零加加速度段的闭环位置跟踪误差,提高轨迹跟踪性能。  相似文献   

17.
自抗扰技术在卫星姿态模拟系统中的应用   总被引:7,自引:4,他引:3  
建立了高精度卫星姿态模拟系统用于光通信地面仿真试验,针对卫星轨迹特点,设计了一种改进的自抗扰控制算法。介绍了自抗扰控制技术的特点和控制原理,提出改进的伺服算法,为自抗扰算法引入了选择性积分项。针对系统±10″动态误差要求,设计了多阈值非线性函数,并添加状态判断模块实时更改非线性函数参数。同时,给出了算法主要参数的整定原则。然后,基于控制器开放伺服功能,给出了自抗扰控制的实现方法和计算流程。实验结果表明:系统具有良好的连续加减速能力,跟踪斜坡信号的动态误差为±6″;经对比,在跟踪卫星姿态轨迹时,自抗扰控制的抗干扰能力优于PID控制,跟随误差达到±7″,满足高精度姿态仿真要求。  相似文献   

18.
为提高大型液压机驱动系统控制精度,提出了基于改进型Lu Gre摩擦模型的补偿控制方法。建立了液压机驱动系统的动力学模型,通过改进型Lu Gre模型来描述液压机的综合摩擦特性。分别设计了PID控制器、2自由度PID控制器以及模糊自适应控制器,通过仿真实验验证了补偿方案的有效性,并对比分析了3种补偿控制方案的效果。仿真结果表明:采用模糊自适应补偿控制方案效果最优,2自由度PID补偿控制方案次之,常规PID补偿效果最差。当以正弦运动作为驱动系统的输入信号时,采用模糊控制补偿方案的速度跟踪均方误差(Mean Square Error,MSE)能从PID补偿方案的5.771×10-3减小至5.903×10-4。采用模糊自适应补偿方案能有效地抑制摩擦对液压机驱动系统低速性能的不利影响,可显著提高其动态跟踪性能。  相似文献   

19.
直线电机精密定位平台轨迹跟踪控制器设计   总被引:2,自引:1,他引:2  
为了实现直线电机精密定位平台的位置和速度的轨迹跟踪控制,本文基于内模控制(IMC)的基本原理,在直线电机精密定位平台参数辨识的基础上,设计了定位平台速度环的模型状态反馈(MSF)控制器和基于位置环PID和速度环MSF的级联控制器。将PID/MSF级联控制器与速度/加速度前馈控制(VFC/AFC)相结合,构成了PID/MSF+VFC/AFC的复合轨迹跟踪控制器。该复合轨迹跟踪控制器通过整定速度前馈的增益来改善位置环偏差控制的跟踪滞后现象和动态响应,增加控制系统的稳定性和伺服精度;通过整定加速度前馈的增益在不减小级联控制器位置环增益的前提下,减小速度前馈带来的超调量,提高轨迹跟踪精度。基于MATLAB/dSPACE实时仿真控制平台,实现了某直线电机平台的轨迹跟踪控制。仿真和实验结果表明,该轨迹跟踪控制器的轨迹跟踪精度为±0.028 mm,定位精度为±4 μm,满足直线电机精密定位平台轨迹跟踪控制的要求。  相似文献   

20.
基于专家PID的径向柱塞变量泵电液伺服控制   总被引:5,自引:0,他引:5  
针对电液伺服控制径向柱塞变量泵,设计了专家PID控制器,并通过计算机仿真,再现了系统跟踪阶跃信号时的系统响应。仿真结果表明,基于专家PID控制器的电液伺服控制径向柱塞变量泵具有良好的动态性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号