首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The goal of the present work was to develop a new synthetic nanosystem for gene delivery. For this purpose, we chose two polysaccharides, hyaluronic acid (HA) and chitosan (CS), as the main components of the nanocarrier. Nanoparticles with different hyaluronate:chitosan (HA:CS) mass ratios (0.5:1 and 1:1) and different polymer molecular weights (hyaluronate 170 (HA) or <10?kDa (HAO) and chitosan 125 (CS) or 10-12?(CSO)?kDa) could be obtained using an ionic crosslinking method. These nanoparticles were loaded with pDNA and characterized for their size, zeta potential and pDNA association efficiency. Moreover, their toxicity and ability to transfect the model plasmid pEGFP-C1 were evaluated in the cell line HEK 293, as well as their intracellular fate. The results showed that HA:CS nanoparticles have a small size in the range of 110-230?nm, a positive zeta potential of +10 to +32?mV and a very high pDNA association efficiency of 87-99% (w/w). On the other hand, nanoparticles exhibited low cell toxicity and transfection levels up to 25% GFP expressing HEK?293 cells, lasting for the whole observation period of 10 days. We also provide basic information about the role of both polymers, HA and CS, and the effect of their molecular weight on the effectiveness of the resulting DNA nanocarrier, being the highest transfection levels observed with HAO:CSO 1:1 nanoparticles. In?conclusion, HA:CS nanoparticles are promising carriers for gene delivery.  相似文献   

2.
Ye J  Wang A  Liu C  Chen Z  Zhang N 《Nanotechnology》2008,19(28):285708
The objective of this study was to design novel anionic ternary nanoparticles for gene delivery. These ternary nanoparticles were equipped with protamine/DNA binary complexes (150-200?nm) as the support, and the anionic formation was achieved by absorption of anionic solid lipid nanoparticles (≤20?nm) onto the surface of the binary complexes. The small solid lipid nanoparticles (SLNs) were prepared by a modified film dispersion-ultrasonication method, and adsorption of the anionic SLNs onto the binary complexes was typically carried out in water via electrostatic interaction. The formulated ternary nanoparticles were found to be relatively uniform in size (257.7 ± 10.6?nm) with a 'bumpy' surface, and the surface charge inversion from 19.28 ± 1.14?mV to -17.16 ± 1.92?mV could be considered as evidence of the formation of the ternary nanoparticles. The fluorescence intensity measurements from three batches of the ternary nanoparticles gave a mean adsorption efficiency of 96.75 ± 1.13%. Circular dichroism spectra analysis showed that the protamine/DNA complexes had been coated by small SLNs, and that the anionic ternary nanoparticles formed did not disturb the construction of the binary complexes. SYBR Green I analysis suggested that the ternary nanoparticles could protect the DNA from nuclease degradation, and cell viability assay results showed that they exhibit lower cytotoxicity to A549 cells compared with the binary complexes and lipofectamine. The transfection efficiency of the ternary nanoparticles was better than that of naked DNA and the binary complexes, and almost equal to that of lipofectamine/DNA complexes, as revealed by inversion fluorescence microscope observation. These results indicated that the anionic ternary nanoparticles could facilitate gene transfer in cultured cells, and might alleviate the drawbacks of the conventional cationic vector/DNA complexes for gene delivery in vivo.  相似文献   

3.
The potential of cationic SiO2 nanoparticles was investigated for in vivo gene transfer in this study. Cationic SiO2 nanoparticles with surface modification were generated using amino-hexyl-amino-propyltri-methoxysilane (AHAPS). The zeta potential of the nanoparticles at pH = 7.4 varied from -31.4 mV (unmodified particles; 10 nm) to +9.6 mV (modified by AHAPS). Complete immobilization of DNA at the nanoparticle surface was achieved at a particle ratio of 80 (w/w nanoparticle/DNA ratio). The surface modified nanoparticle had a size of 42 nm with a distribution from 10-100 nm. The ability of these particles to transfect pCMVbeta reporter gene was tested in Cos-1 cells, and optimum results were obtained in the presence of FCS and chloroquine at a particle ratio of 80. These nanoparticles were tested for their ability to transfer genes in vivo in the mouse lung, and a two-times increase in the expression levels was found with silica particles in comparison to EGFP alone. Very low or no cell toxicity was observed, suggesting silica nanoparticles as potential alternatives for gene transfection.  相似文献   

4.
The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40?nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38?mV for unmodified chitosan nanoparticles and 4.3 ± 0.74?mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy.  相似文献   

5.
The objective of this study was to develop a nanoparticulate drug delivery system based on the surface modification of poly(lactide-co-glycolide) (PLGA) nanoparticles with a thiolated chitosan. PLGA nanoparticles were prepared by the emulsification-solvent evaporation method. Immobilization of chitosan to the surface of PLGA nanoparticles via amide bonds was mediated by a carbodiimide. Thiol groups were covalently bound to the chitosan surface of particles by reaction with 2-iminothiolane. Obtained nanoparticles were characterized in vitro regarding size, zeta potential, thiol group content, stability at different pH values, mucoadhesion, and drug release. Results demonstrated that the surface modification of PLGA nanoparticles with thiolated chitosan (chitosan-TBA) leads to nanoparticles of a mean diameter of 889.5 ± 72 nm and positive zeta potential of + 24.74 mV. The modified nanoparticles contained 7.32 ± 0.24 μmol thiol groups per gram nanoparticles. The size of nanoparticles was strongly influenced by the pH of the surrounding medium, being 925.0 ± 76.3 nm at pH 2 and 577.8 ± 66.7 nm at pH 7.4. Thiolated nanoparticles showed a 3.3-fold prolonged residence time on the mucosa and an unchanged release profile in comparison to unmodified PLGA nanoparticles. These data suggest that surface modified chitosan-TBA conjugate PLGA nanoparticles have the potential to be used as mucoadhesive drug delivery system.  相似文献   

6.
Non-viral vectors composed of biodegradable polymers or lipids have been considered as a safer alternative for gene carriers over viral vectors. Among some of the cationic polymers, polyethyleneimine (PEI) possess high pH-buffering capacity that can provide protection to nucleotides from acidic degradation and promotes endosomal and lysosomal release. However, it has been reported that cytotoxicity of PEI depends on the molecular weight of the polymer. Hence modifications of PEI structure for clinical application have been developed in order to reduce the cytotoxicity, or improve the insufficient transfection efficiency of lower molecular weight PEI. In this study, 10 k PEI was modified by grafting stearic acid (SA) and formulated to polymer micelles with positive surface charge and evaluated for pDNA delivery. The amine group on PEI was crosslinked with the carboxylic group of stearic acid by 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide (EDC) as linker. PEI-SA micelles were then prepared using oil in water (o/w) solvent evaporation method. The success of PEI-SA conjugation structure was confirmed with 1H NMR. The average diameter and zeta potential determined by photon correlation spectroscopy was 149.6 +/- 1.2 nm and 64.1 +/- 1.5 mV, respectively. These self-assemble positive charge micelles showed effective binding to pDNA for transfection. PEI-SA micelles exhibited lower cytotoxicity compared to that of PEI only, while flow cytometry analysis revealed PEI-SA/pEGFP complex provided 62% high EGFP expression. Luciferase activity also showed high transfection efficiency of PEI-SA micelles for weight ratio above 4.5 that was comparable to PEI only. These results demonstrated that stearic acid grafted PEI micelles can provide high transfection efficiency comparable to unmodified PEI, and exhibit low cytotoxicity. Stearic acid grafted PEI micelles can be promising polymer carriers in genetic therapy.  相似文献   

7.
ABSTRACT

The objective of this study was to develop a nanoparticulate drug delivery system based on the surface modification of poly(lactide-co-glycolide) (PLGA) nanoparticles with a thiolated chitosan. PLGA nanoparticles were prepared by the emulsification-solvent evaporation method. Immobilization of chitosan to the surface of PLGA nanoparticles via amide bonds was mediated by a carbodiimide. Thiol groups were covalently bound to the chitosan surface of particles by reaction with 2-iminothiolane. Obtained nanoparticles were characterized in vitro regarding size, zeta potential, thiol group content, stability at different pH values, mucoadhesion, and drug release. Results demonstrated that the surface modification of PLGA nanoparticles with thiolated chitosan (chitosan-TBA) leads to nanoparticles of a mean diameter of 889.5 ± 72 nm and positive zeta potential of + 24.74 mV. The modified nanoparticles contained 7.32 ± 0.24 μmol thiol groups per gram nanoparticles. The size of nanoparticles was strongly influenced by the pH of the surrounding medium, being 925.0 ± 76.3 nm at pH 2 and 577.8 ± 66.7 nm at pH 7.4. Thiolated nanoparticles showed a 3.3-fold prolonged residence time on the mucosa and an unchanged release profile in comparison to unmodified PLGA nanoparticles. These data suggest that surface modified chitosan-TBA conjugate PLGA nanoparticles have the potential to be used as mucoadhesive drug delivery system.  相似文献   

8.
Nanocomposite materials consisting of Pd nanoparticles deposited on aligned multi-walled carbon nanotubes have been fabricated through hydrogen reduction of palladium-beta-diketone precursor in supercritical carbon dioxide. The supercritical fluid processing allowed deposition of high-density Pd nanoparticles (approximately 5-10 nm) on both as-grown (unfunctionalized) and functionalized (using HNO3 oxidation) nanotubes. However, the wet processing for functionalization results in pre-agglomerated, bundle-shaped nanotubes, thus significantly reducing the effective surface area for Pd particle deposition, although the bundling provides more secure, lock-in-place positioning of nanotubes and Pd catalyst particles. The nanotube bundling is substantially mitigated by Pd nanoparticle deposition on the unfunctionalized and geometrically separated nanotubes, which provides much higher catalyst surface area. Such nanocomposite materials utilizing geometrically secured and aligned nanotubes can be useful for providing much enhanced catalytic activities to chemical and electrochemical reactions (e.g., fuel cell reactions), and eliminate the need for tedious catalyst recovery process after the reaction is completed.  相似文献   

9.
Microenvironment‐responsive supramolecular assemblies have attracted great interest in the biomedical field due to their potential applications in controlled drug release. In this study, oxidation‐responsive supramolecular polycationic assemblies named CPAs are prepared for nucleic acid delivery via the host–guest interaction of β‐cyclodextrin based polycations and a ferrocene‐functionalized zinc tetraaminophthalocyanine core. The reactive oxygen species (ROS) can accelerate the disassembly of CPA/pDNA complexes, which would facilitate the release of pDNA in the complexes and further benefit the subsequent transfection. Such improvement in transfection efficiency is proved in A549 cells with high H2O2 concentration. Interestingly, the transfection efficiencies mediated by CPAs are also different in the presence or absence of light in various cell lines such as HEK 293 and 4T1. The single oxygen (1O2), produced by photosensitizers in the core of CPAs under light, increases the ROS amount and accelerates the disassembly of CPAs/pDNA complexes. In vitro and in vivo studies further illustrate that suppressor tumor gene p53 delivered by CPAs exhibits great antitumor effects under illumination. This work provides a promising strategy for the design and fabrication of oxidation‐responsive nanoassemblies with light‐enhanced gene transfection performance.  相似文献   

10.
Wang S  Jiang SP  Wang X 《Nanotechnology》2008,19(26):265601
A highly effective polyelectrolyte functionalization of multi-walled carbon nanotubes (MWCNTs) by poly(diallyldimethylammonium chloride) (PDDA-MWCNTs) was employed for low temperature fuel cell applications. PDDA-MWCNTs were employed as support materials for the in?situ deposition and formation of platinum nanoparticles, via the self-assembly between the negative Pt precursor and positively charged functional groups of PDDA-functionalized MWCNTs. The effect of the functionalization on the deposition and distribution of Pt nanoparticles was investigated in detail. Compared with MWCNTs functionalized by conventional acid-oxidation treatment (AO-MWCNTs), the PDDA-functionalized MWCNTs cause no structural damage on MWCNTs and provide high density and homogeneous surface functional groups for the anchoring Pt nanoparticles. Pt nanoparticles with an average particle size of 1.8 ± 0.4?nm and loading as high as 60?wt% were realized on PDDA-MWCNTs supports. The Pt/PDDA-MWCNTs electrocatalysts show significantly higher electrochemically active surface area and higher electro-catalytic activity for methanol oxidation than that of Pt/AO-MWCNTs and E-TEK Pt/C electrocatalysts.  相似文献   

11.
Carbon nanotubes (CNTs) are nanomaterials of high interest due to their unique structural, electrical, and mechanical properties. Carbon materials have been widely employed to support metallic nanoparticles for catalysis and electrochemical applications. In this work, we investigated the synthesis of platinum nanoparticles generated from the complex Pt2(dba)3 (tris(dibenzylideneacetone) diplatinum) and stabilized with a long alkyl chain amine, hexadecylamine (HDA) and supported on functionalized single-walled carbon nanotubes (SWCNTs). High resolution transmission electron microscopy (HRTEM) studies revealed isolated Pt nanoparticles (2?C3 nm) on SWCNTs. Powder X-ray diffraction (XRD) was used to assess the structure of Pt nanoparticles dispersed on SWCNTs assigned to Pt face-centered cubic (fcc). Additionally, infrared Fourier transform spectroscopy confirmed the presence of the stabilizer at the surface of the Pt nanoparticles even after the purification step and functional groups at the surface of pre-treated SWCNTs. This synthetic method may be an alternative route to prepare small size Pt nanoparticles supported on functionalized SWCNTs.  相似文献   

12.
This work deals with the production and characterization of water-compatible, iron oxide based nanoparticles covered with functional poly(ethylene glycol) (PEG)-biotin surface groups (SPIO-PEG-biotin). Synthesis of the functionalized colloids occurred by incubating the oleate coated particles used as precursor magnetic fluid with anionic liposomes containing 14?mol% of a phospholipid-PEG-biotin conjugate. The latter was prepared by coupling dimyristoylphosphatidylethanolamine (DC(14:0)PE) to activated α-biotinylamido-ω -N-hydroxy-succinimidcarbonyl-PEG (NHS-PEG-biotin). Physical characterization of the oleate and PEG-biotin iron oxide nanocolloids revealed that they appear as colloidal stable clusters with a hydrodynamic diameter of 160?nm and zeta potentials of -?39?mV (oleate coated particles) and -?14?mV (PEG-biotin covered particles), respectively, as measured by light scattering techniques. Superconducting quantum interference device (SQUID) measurements revealed specific saturation magnetizations of 62-73?emu?g(-1) Fe(3)O(4) and no hysteresis was observed at 300?K. MR relaxometry at 3?T revealed very high r(2) relaxivities and moderately high r(1) values. Thus, both nanocolloids can be classified as small, superparamagnetic, negative MR contrast agents. The capacity to functionalize the particles was illustrated by binding streptavidin alkaline phosphatase (SAP). It was found, however, that these complexes become highly aggregated after capturing them on the magnetic filter device during high-gradient magnetophoresis, thereby reducing the accessibility of the SAP.  相似文献   

13.
Methotrexate (MTX), a stoichiometric inhibitor of dihydrofolate reductase enzyme, is a chemotherapeutic agent for treating a diversity of neoplasms. In this study, we design and developed a new formulation of MTX that serves as drug carrier and examined its cytotoxic effect in vitro. This target drug delivery system is dependent on the release of the MTX within the lysosomal compartment. The iron oxide magnetic nanoparticles (IONPs) were first surface-coated with L-lysine and subsequently conjugated with MTX through amidation between the carboxylic acid end groups on MTX and the amine groups on the IONPs surface. MTX-conjugated L-lysine coated IONPs (F-Lys-MTX NPs) was characterized by X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy techniques. The cytotoxicity of the void of MTX and F-Lys-MTX NPs were compared to each other by MTT assay of the treated MCF-7 cell lines. The results showed that the ζ-potential of F-Lys-MTX NPs was about ?5.49?mV and the average size was 43.72?±?4.73?nm. Model studies exhibited the release of MTX via peptide bond cleavage in the presence of proteinase K and at low pH. These studies specify that F-Lys-MTX NPs have a very remarkable anticancer effect, for breast cancer cell lines.  相似文献   

14.
Gu W  Xu Z  Gao Y  Chen L  Li Y 《Nanotechnology》2006,17(16):4148-4155
The purpose of this work was to determine the stability of pDNA/poly(L-lysine) complex (DNA/PLL) during microencapsulation, prepare transferrin (TF) conjugated PEGylated nanoparticles (TF-PEG-NP) loading DNA/PLL, and assess its physicochemical characteristics and in vitro transfection efficiency. The DNA/PLL was prepared by mixing plasmid DNA (pDNA) in deionized water with various amounts of PLL. PEGylated nanoparticles (PEG-NP) loading DNA/PLL were prepared by a water-oil-water double emulsion solvent evaporation technique. TF-PEG-NP was prepared by coupling TF with PEG-NP. The physicochemical characteristics of TF-PEG-NP and in vitro transfection efficiency on K562 cells were measured. The results showed that free pDNA reserved its double supercoiled form (dsDNA) for only on average 25.7% after sonification, but over 70% of dsDNA was reserved after pDNA was contracted with PLL. The particle size range of TF-PEG-NP loading DNA/PLL was 150-450?nm with entrapment efficiency over 70%. TF-PEG-NP exhibited the low burst effect (<10%) within 1 day. After the first phase, DNA/PLL displayed a sustained release. The amount of cumulated DNA/PLL release from TF-PEG-NP with 2% polymer over 7 days was 85.4% for DNA/PLL (1:0.3 mass ratio), 59.8% and 43.1% for DNA/PLL (1:0.6) and DNA/PLL (1:1.0), respectively. To TF-PEG-NP loading DNA/PLL without chloroquine, the percentage of EGFP expressing cells was 28.9% for complexes consisting of DNA/PLL (1:0.3), 38.5% and 39.7% for DNA/PLL (1:0.6) and DNA/PLL (1:1.0), respectively. In TF-PEG-NP loading DNA/PLL with chloroquine, more cells were transfected, the percentage of positive cells was 37.6% (DNA/PLL, 1:0.3), 47.1% (DNA/PLL, 1:0.6) and 45.8% (DNA/PLL, 1:1.0), which meant that the transfection efficiency of pDNA was increased by over 50 times when PLL and TF-PEG-NP were jointly used as a plasmid DNA carrier, in particular, the maximal percentage of positive cells (47.1%) from TF-PEG-NP loading DNA/PLL (1:0.6) was about 70 times the transfection efficiency of free plasmid DNA. The average cell viability of TF-PEG-NP loading DNA/PLL was about 90%, which meant that TF-PEG-NP appeared to be safer than PLL alone. As a result, TF-PEG-NP loading DNA/PLL could be a more effective non-viral vector for the delivery of pDNA.  相似文献   

15.
Objective: The objective of this study was to formulate DNA-loaded poly(d,l-lactide-co-glycotide) (PLGA) nanoparticles by a modified nanoprecipitation method. Methods: DNA-loaded PLGA nanoparticles were prepared by the modified nanoprecipitation method and the double emulsion/solvent evaporation method. The characterizations of DNA-loaded nanoparticles such as entrapment efficiency, morphology, particle size, zeta potential, structural integrity of the loaded DNA, and stability of the loaded DNA in PLGA nanoparticles against DNase I, in vitro release, cell viability and in vitro transfection capability were investigated. Results: The resulted PLGA nanoparticles by the modified nanoprecipitation method had uniform spherical shape, narrow size distribution with average particles size near 200 nm, negative zeta potential of ?12.6 mV at pH 7.4, and a sustained-release property in vitro. Plasmid DNA could be efficiently encapsulated into PLGA nanoparticles (>95%) without affecting its intact conformation using this modified nanoprecipitation method, which was superior to the double emulsion/solvent evaporation method. The PLGA nanoparticles were much safer to A549 cell compared to commercial Lipofectamine 2000 and could successfully transfer plasmid-enhanced green fluorescent protein into A549 cells. Conclusion: In conclusion, the modified nanoprecipitation method could be applied as an efficient way to fabricate DNA-loaded PLGA nanoparticles instead of the conventional double emulsion/solvent evaporation method.  相似文献   

16.
A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (-15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-Ioaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4-5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies.  相似文献   

17.
Abstract

Chitosan and chitosan derivative-based nanoparticles loaded with insulin were prepared by self-assembly, via electrostatic interactions between the negatively charged drug and the positively charged polymers. In the investigated chitosan derivatives, the amine groups were substituted to different extents (33, 52 or 99%) by 2-hydroxypropyl-3-trimethyl ammonium groups, rendering the polymers permanently positively charged, irrespective of the pH. This is an important property for this type of advanced drug delivery system, since the pH value changes throughout the gastrointestinal tract and electrostatic interactions are of crucial importance for the stability of the nanoparticles. Permanent positive charges are also in favor of mucoadhesion. In contrast, the electric charges of chitosan molecules depend on the pH of the surrounding medium. Since the solubility of the chitosan derivatives increased due to the introduction of quaternary ammonium groups, sodium tripolyphosphate (TPP) was added to the systems to create supplementary cross-links and stabilize the nanoparticles. The presence of TPP influenced both the dissolution of the polymer matrix as well as the resulting release kinetics. The underlying drug release mechanisms were found to be more complex than simple diffusion under constant conditions, likely involving also ionic interactions and matrix dissolution. The most promising formulation was based on a chitosan derivative with 33% substitution degree and characterized by a Z-average of 142?±?10?nm, a zeta potential of 29?±?1?mV, an encapsulation efficacy of 52?±?3% and, most importantly, the release of insulin was sustained for more than 210?min.  相似文献   

18.
The objective of this study was to evaluate the influence of pH on the permeation of model drugs through freshly excised rat stomach. Additionally, the capability of excised gastric mucosa to maintain an acidic pH was assessed. In vitro permeation studies were performed in Ussing-type diffusion chambers with rat stomach using fluorescence-labeled bacitracin (bac-FITC), sodium fluorescein (NaFlu), propranolol HCl, and cimetidine as model drugs. The pH was adjusted to pH 1, 2, and 6.8 in the donor chamber and pH 7.4 in the acceptor chamber. The study demonstrated that both, the fore stomach and the glandular gastric mucosa, are capable of maintaining an acidic pH of 1-1.2 in the donor chamber. P(app) (permeation coefficients) were found to be 1.4?±?0.6 ×·10(-7) and 7.6?±?0.7 ×·10(-7) for bac-FITC and 3.3?±?1.5 ×·10(-7) and 2.4?±?0.6 ×·10(-6) cm/sec for NaFlu at pH 2 and 6.8, respectively, in the glandular stomach. In order to evaluate the effect of pH on the integrity of paracellular space, propranolol as high-permeability drug and cimetidine as low-permeability drug were chosen. The P(app) of propranolol HCl was determined to be 5.9?±?0.3 ×·10(-7) and 1.1?±?0.7 ×·10(-6) cm/sec at pH 2 and 6.8, respectively, in the glandular stomach. Cimetidine showed a permeability of 1.4?±?0.4 ×·10(-5) and 9.6?±?2.3 ×·10(-6) cm/sec at pH 2 and 6.8. Results provide essential basic information for the development of gastric drug delivery systems.  相似文献   

19.
The morphological, electrical and rheological characterization of polystyrene nanocomposites containing copper nanowires (CuNWs) functionalized with 1-octanethiol is presented. Characterization by SEM and TEM shows that surface functionalization of the nanowires resulted in significant dispersion of CuNWs in the PS matrix. The electrical characterization of the nanocomposites indicates that functionalized CuNWs start to form electrically conductive networks at lower concentrations (0.25?vol% Cu) than using unfunctionalized CuNWs (0.5?vol% Cu). The organic coating on the nanowires prevents significant changes in the electrical resistivity in the vicinity of the percolation threshold. Percolated nanocomposites showed electrical resistivity in the range of 10(6)-10(7)?Ω?cm. The transition from liquid-like to solid-like behavior (rheological percolation) of the nanocomposites was studied using dynamic rheology at 200?°C. Unfunctionalized CuNWs result in electrical and rheological percolation at similar concentrations. Functionalized CuNWs show rheological percolation at higher concentration (1.0-2.0?vol%) than that required for electrical percolation. This is attributed to the decrease in the interfacial tension between nanowires and polymer chains and its effect on the viscoelastic behavior of the combined polymer-nanowire networks.  相似文献   

20.
Listeria monocytogenes(L.monocytogenes)is one of the top five dangerous foodborne pathogens which widely exists in most raw food and has approximately 30%mortality rate in high-risk groups.Food safety caused by foodborne pathogens is still a major problem faced by humans in all world.The conven-tional analytical methods currently used involve complex bacteriological tests and usually take several days for incubation and analysis.Thus,in order to prevent the spread of disease,the development of a detection method with high speed,high accuracy and sensitivity is urgent and necessary.Herein,we developed an approach for the identification and magnetic capture of L.monocytogenes by using core@shell Fe3O4@silica nanoparticles terminated with hydroxyl or amine groups.Our results show that both amine-and hydroxyl-terminated Fe3O4@silica core@shell nanoparticles functionalized with spe-cific antibodies,present 95.2%±6.2%and 98.6%±0.3%capture efficacies,respectively.However,without conjugating the specific antibodies,the hydroxyl-terminated Fe3O4@silica nanoparticles exhibit 17.6%±1.6%efficacy,while the amine-terminated one remains 93.2%±9.2%capture efficiency ascribed to the high affinity.This study quantitatively uncovers the specific and non-specific recognitions relevant to the molecular-scale physiochemical interactions between the microorganisms and the functionalized particles,and the results from this work can be generalized and extended to other bacterial species by changing antibodies,also have important implications in developing advanced analytic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号