首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lü Q  Li A  Guo F  Sun L  Zhao L 《Nanotechnology》2008,19(14):145701
In order to improve the solubility of doped nanoparticles in solutions, Y(2)O(3):Tm(3+)/Yb(3+) nanoparticles were synthesized using the Pechini-type sol-gel method, and their surfaces were modified with amino or carboxylic functional groups using ligand-capped and ligand-exchanging methods. The nanoparticles with modified surfaces were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and zeta potential (ζ), and their photoluminescence was studied by fluorescence spectrophotometry. The results indicate that the upconversion fluorescence of amine-?and carboxyl-modified nanoparticles was enhanced after the surfaces of nanoparticles were modified. Compared to the upconversion fluorescence intensity of non-modified nanoparticles, the upconversion fluorescence intensities of amine-?and carboxyl-modified nanoparticles were enhanced by 9.4 and 1.4 times, respectively. These results are attributed to the formation of the chemical bonds between Y(2)O(3):Tm(3+)/Yb(3+) core and non-crystalline SiO(2) shell via Y-O-Si bridges, which activate the 'dormant' Tm(3+)/Yb(3+) ions on the surfaces of nanoparticles. The results of the solubility investigations for amine-?and carboxyl-modified nanoparticles indicate that severe aggregation can be weakened by adhering amino or carboxylic functional groups to the surfaces of nanoparticles. It is therefore concluded that the good hydrophilicity resulting from active functional groups in solutions and more intense upconversion fluorescence enable the doped core-shell nanoparticles to have great potential to be used as fluorescence biolabels in the future.  相似文献   

2.
Synthesis process and luminescence properties of trivalent lanthanide ions (Ln3+) doped YF3 nanoparticles have been investigated. To synthesis Ln(3+)-doped YF3 nanoparticles, the mixture of (YCl3 x nH2O + LnCl3 x nH2O), and NH4F was hydrothermal treated at 180 degrees C in a Teflon-liner auto-clave or heated at higher temperatures (400 degrees C - 600 degrees C) in a stove. The XRD patterns showed that the Ln(3+)-doped orthorhombic YF3 nanoparticles with no second phase have been prepared. The solid solution Y(1-x)Eu(x)F3 (x = 0 - 0.4) nanoparticles have been synthesized. The luminescence concentration quenching resulted from resonance energy transfer between neighboring Eu3+ ions occurred at higher Eu3+ concentrations (30 mol%). The upconversion luminescence of Er(3+)-Yb3+ codoped YF3 nanoparticles under 980 nm excitation has also been observed. With increase of heated temperature, the size of the Er(3+)-Yb3+ codoped YF3 nanoparticles increased gradually, and upconversion luminescence intensity increased significantly.  相似文献   

3.
Chang M  Tie S 《Nanotechnology》2008,19(7):075711
A novel polychromic phosphor with core-shell heteronanostructure has been prepared to improve the chromatic index of phosphors. As for the first example, Y(2)O(3):Eu(3+)@SiO(2)@YVO(4):Eu(3+), its synthetic route, structure and optical properties are presented in this paper. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), energy-dispersive x-ray spectra (EDS) and photoluminescence (PL) were all employed to characterize the composite core-shell phosphors. The XRD, FE-SEM and HR-TEM results indicate that the SiO(2) and YVO(4):Eu(3+) layers have been successfully coated on Y(2)O(3):Eu(3+) nanoparticles and SiO(2) layer, respectively: these layers were further verified by the EDS. The PL showed that the red-emitting phosphor Y(2)O(3):Eu(3+)@SiO(2)@YVO(4):Eu(3+) possessed the independent luminescent properties of both the core Y(2)O(3):Eu(3+) and the shell YVO(4):Eu(3+). The emissions were dominated by [Formula: see text] or [Formula: see text] transitions of Eu(3+) when excited with different wavelengths. Since this broad-band response to excitation in the range of 225-340?nm gave more red/dark red emissions found at 612, 616 and 620?nm, the novel phosphor Y(2)O(3):Eu(3+)@SiO(2)@YVO(4):Eu(3+) could have potential biological labeling applications with wide flexibility.  相似文献   

4.
Nanoparticles of Eu(3+) doped Y(2)O(3) (core) and Eu(3+) doped Y(2)O(3) covered with Y(2)O(3) shell (core-shell) are prepared by urea hydrolysis for 3?h in ethylene glycol medium at a relatively low temperature of 140?°C, followed by heating at 500 and 900?°C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18?nm for 500 and 900?°C heated samples respectively. Based on the luminescence studies of 500 and 900?°C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu(3+) emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu(3+) concentration of 4-5?at.%. A luminescence study establishes that the Eu(3+) environment in amorphous Y (OH)(3) is different from that in crystalline Y(2)O(3). For a fixed concentration of Eu(3+) doping, there is a reduction in Eu(3+) emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu(3+) increases with increase of crystallinity.  相似文献   

5.
Wan N  Lin T  Xu J  Xu L  Chen K 《Nanotechnology》2008,19(9):095709
The sol-gel method was used to prepare SiO(2) thin films co-doped with In(2)O(3) nano-particles and Eu(3+). The formation of nano-sized In(2)O(3) particles after annealing at 900?°C was confirmed by the x-ray diffraction technique. A novel phase transition from a hexagonal rhombic centered to a body centered cubic structure of In(2)O(3) nano-particles was observed at around 1100?°C. It is found that the particle size and the particle density of In(2)O(3) can be tuned by changing the annealing temperature and the indium doping concentration, respectively. The characteristic emission bands from Eu(3+) ions can be observed at room temperature and the luminescence intensity is increased 20 times by introducing In(2)O(3) nano-particles into Eu(3+)-doped silica films. The integrated luminescence intensity was gradually enhanced by increasing the In(3+) concentration, suggesting effective energy transfer from nano-sized In(2)O(3) to Eu(3+) ions.  相似文献   

6.
Eu(3+) co-doped Y(2)O(3):Tb nanoparticles were prepared by the combustion method and characterized for their structural and luminescence properties as a function of annealing temperatures and relative concentration of Eu(3+) and Tb(3+) ions. For Y(2)O(3):Eu,Tb nanoparticles annealed at 600 and 1200?°C, variation in the relative intensity of excitation transitions between the (7)F(6) ground state and low spin and high spin 4f(7)5d(1) excited states of Tb(3+) is explained due to the combined effect of distortion around Y(3+)/Tb(3+) in YO(6)/TbO(6) polyhedra and the size of the nanoparticles. Increase in relative intensity of the 285?nm peak (spin-allowed transition denoted as peak B) with respect to the 310?nm peak (spin-forbidden transition denoted as peak A) with decrease of Tb(3+) concentration in the Y(2)O(3):Eu,Tb nanoparticles heated at 1200?°C is explained based on two competing effects, namely energy transfer from Tb(3+) to Eu(3+) ions and quenching among the Tb(3+) ions. Back energy transfer from Tb(3+) to Eu(3+) in these nanoparticles is found to be very poor.  相似文献   

7.
Yu Y  Wang Y  Chen D  Huang P  Ma E  Bao F 《Nanotechnology》2008,19(5):055711
SiO(2):Eu(3+) based bulk composites containing ZnO quantum dots were synthesized by an in situ sol-gel process. The quantum dots homogeneously distributed among the SiO(2) glass matrix exhibited a broad ultraviolet emission band centered at 385?nm. The ZnO ultraviolet luminescence intensity decreased monotonically with increasing Eu(3+) doping concentration, while the Eu(3+) visible emission was intensified significantly by the precipitation of ZnO quantum dots, ascribed to the energy transfer from ZnO to Eu(3+). The Eu(3+) luminescence at 612?nm for the sample with 20?mol% ZnO was about ten times stronger than that for the sample without ZnO. The influence of ZnO or Eu(3+) concentration on the energy transfer process is discussed.  相似文献   

8.
ZrO2 interface was designed to block the reaction between SiO2 and Y2O3 in SiO2@Y2O3:Eu coreshell structure phosphor. SiO2@ZrO2@Y2O3:Eu core-multi-shell phosphors were successfully synthesized by combing an LBL method with a Sol-gel process. Based on electron microscopy, X-ray diffraction, and spectroscopy experiments, compelling evidence for the formation of the Y2O3:Eu outer shell on ZrO2 were presented. The presence of ZrO2 layer on SiO2 core can block the reaction of SiO2 core and Y2O3 shell effectively. By this kind of structure, the reaction temperature of the SiO2 core and Y2O3 shell in the SiO2@Y2O3:Eu core-shell structure phosphor can be increased about 200-300 degrees C and the luminescent intensity of this structure phosphor can be improved obviously. Under the excitation of ultraviolet (254 nm), the Eu3+ ion mainly shows its characteristic red (611 nm, 5D0-7F2) emissions in the core-multi-shell particles from Y2O3:Eu3+ shells. The emission intensity of Eu3+ ions can be tuned by the annealing temperatures, the number of coating times, and the thickness of ZrO2 interface, respectively.  相似文献   

9.
A uniform nanolayer of europium-doped Gd2O3 was coated on the surface of preformed submicron silica spheres by a Pechini sol-gel process. The resulted SiO2 @ Gd2O3:Eu3+ core-shell structured phosphors were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays. The XRD results show that the Gd2O3:Eu3+ layers start to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. The core-shell phosphors possess perfect spherical shape with narrow size distribution (average size: 640 nm) and non-agglomeration. The thickness of the Gd2O3:Eu3+ shells on the SiO2 cores can be adjusted by changing the deposition cycles (70 nm for three deposition cycles). Under short UV excitation, the obtained SiO2@Gd2O3:Eu3+ particles show a strong red emission with 5D0-7F2 (610 nm) of Eu3+ as the most prominent group. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.  相似文献   

10.
Al2O3和Y2O3包覆的SiC复合粒子制备   总被引:14,自引:0,他引:14  
本文利用非均匀成核法,将Al(OH)3和Y(OH)3均匀地包匿在SiC粒子表面,制备出被覆Al2O3和Y2O3的SiC复合粒子.包覆Al(OH)3的SiC粒子,其等电点IEP的pH=3.4移至pH=7.3,再用Y(OH)3包覆表面被覆Al(OH)3的SiC复合粒子后,其等电点IEP又从pH=73移至pH=8.6左右.并且表面包覆的SiC粒子,其水悬浮液流变性质发生了变化.经盐酸滴定表明,涂层物质的包覆率可达95%以上.  相似文献   

11.
以NaOH,Y(NO3)3.6H2O和Eu(NO3)3.6H2O为前驱体,通过添加络合剂PEG-2000,采用水热法,成功地合成了Y2O3∶Eu3+纳米棒和纳米管,并采用先进的测试手段对其结构和性能进行了表征与测试。探讨了Y2O3∶Eu3+纳米棒和纳米管的生长机制,同时研究了Y2O3:Eu3+纳米晶的光致发光性能。研究结果表明,水热温度、反应时间、NaOH的添加量和PEG-2000对产物形貌有着非常重要的影响,所制备的材料具有Eu3+的特征红光发射,并在Eu3+的掺杂量为5%(摩尔分数)时样品发光最好。  相似文献   

12.
An atomic force microscopy (AFM) tip has been coated with photoluminescent Eu(3+)-doped Gd(2)O(3) nanorods using a dielectrophoresis technique, which preserves the red emission of the nanorods (quantum yield 0.47). The performance of the modified tips has been tested by using them for regular topography imaging in tapping and contact modes. Both a regular AFM standard grid and a patterned surface (of an organic-inorganic methacrylate Zr-based oxo-cluster and poly(oxyethylene)/siloxane hybrid) have been used. Similar depth values have been measured using a conventional silicon tip and the nanorod-modified tip. The tips before and after use exhibit similar SEM images and photoluminescence spectra and, thus, seem to be stable under working conditions. These tips should find applications in scanning near-field optical microscopy and other scanning techniques.  相似文献   

13.
Being a kind of rare-earth-metal silicate with oxidapatite structure, Ca2R8(SiO4)6O2 (R = Y, Gd, La) is a promising material doped with rare earth, and widely used as phosphors. In this thesis, Ca2Gd8(SiO4)6O2:Dy3+ films were prepared by the sol-gel method. X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) spectra, and lifetimes were used to characterize the resulting films. AFM study indicated that the phosphor films consisted of 120 nm homogeneous particles. By combining the model of Burshtein for donor-donor migration and the V-F-B model for donor-acceptor energy transfer, the experimental luminescence decay curve of 6P(J) state of Gd3+ was re-simulated. It is found that concentration quenching of Gd3+ can be due to the result of the joint action of donor-donor (Gd3+-Gd3+) energy migration and donor-acceptor (Gd3+-Dy3+) energy transfer.  相似文献   

14.
Darbandi M  Hoheisel W  Nann T 《Nanotechnology》2006,17(16):4168-4173
We propose an approach for silica encapsulation of YV((0.7))P((0.3))O(4):Eu(3+), Bi(3+) nanophosphors through a microemulsion process. The resulting YV((0.7))P((0.3))O(4):Eu(3+), Bi(3+)@SiO(2) core-shell nanophosphors were characterized by transmission electron microscopy, UV/vis absorption and photoluminescence spectroscopy, energy-dispersive x-ray analysis (EDAX), selected area electron diffraction and zeta-potential measurements. The obtained nanocomposites have quite a uniform spherical shape and diameters of about 15?nm. Zeta-potential measurements show that coated particles are stable at high volume fractions and can endure large variations in pH and electrolyte concentration without coalescence. These core-shell nanophosphors could also be used as ultrasensitive biological labels, because they are obtained in nanoscale and well dispersible in water.  相似文献   

15.
Eu3+-doped REVO4 nanphosphors were controllably synthesized by an EDTA-mediated hydrothermal method at 180 degrees C using RE(NO3)3 and Na3VO4 as precursors. The obtained products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectra (XPS), and photoluminescence spectroscopy (PL). The XRD results showed that the products were pure tetragonal structure and no other impurity phase appeared. The PL studies demonstrated Eu3+ ions doping effectively enhanced luminescent properties of LaxRE(1-x)VO4 and YxRE(1-x)VO4 nanoparticles, but EU3+ ions doping did not enhance luminescent properties of CexRE(1-x)VO4 (x not equal 0) nanoparticles. The prepared phosphors showed well-defined red luminescence due to radiative transitions from 5D0 to 7F(J) (J = 1,2) levels of Eu3+ ions, respectively. Furthermore, we reported Eu3+-doped CexRE(1-x)VO4 (x not equal 0) phases represented a new class of optically inactive materials.  相似文献   

16.
The lanthanide-doped GdF/sub 3/ nanoparticles have been produced by a simply hydrothermal synthesis procedure. The excitation and emission spectra of the Eu/sup 3+/-doped GdF/sub 3/ nanoparticles showed that the excitation energy of Gd/sup 3+/ is efficiently transferred to Eu/sup 3+/ in the Eu/sup 3+/-doped GdF/sub 3/ nanoparticles. Due to very low phonon energies of GdF/sub 3/ matrix, the /sup 5/D/sub 1/ emission of Eu/sup 3+/ ions in the Eu/sup 3+/-doped GdF/sub 3/ nanoparticles can be observed at room temperature when the doping concentration of Eu/sup 3+/ ions is lower than 15 mol%. The luminescence intensity of the Eu/sup 3+/-doped GdF/sub 3/ nanoparticles increased with increasing concentration of Eu/sup 3+/ ions and reached a maximum at approximately 15 mol%. The Er/sup 3+/-doped GdF/sub 3/ nanoparticles exhibit the typical emission spectra of Er/sup 3+/ in the near-infrared region. The upconversion emission of the Er/sup 3+//Yb/sup 3+/ codoped GdF/sub 3/ nanoparticles can also be observed. However, the upconversion emission intensity of the Er/sup 3+//Yb/sup 3+/-codoped GdF/sub 3/ nanoparticles was much weaker than that of the Er/sup 3+//Yb/sup 3+/-codoped GdF/sub 3/ bulk crystal.  相似文献   

17.
Nanocrystalline GdPO4 : Eu3+ phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by Pechini sol-gel method, resulting in the formation of core-shell structured SiO2 @ GdPO4 : Eu3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT-IR results indicate that GdPO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the images of FESEM and TEM. Under UV light excitation, the SiO2 @ GdPO4 : Eu3+ phosphors show orange-red luminescence with Eu3+ 5D0-7F1 (593 nm) as the most prominent group. The PL excitation and emission spectra suggest that an energy transfer occurs from Gd3+ to Eu3+ in SiO2 @ GdPO4 : Eu3+ phosphors. The obtained core-shell phosphors have potential applications in FED and PDP devices.  相似文献   

18.
Y2O3:RE3+(RE=Eu, Tb, Dy) porous nanotubes were first synthesized using carbon nanotubes as template. The morphology of the coated precursors and porous Y2O3:Eu3+ nanotubes was determined by scanning electron Microscopy (SEM) and transmission electron microscopy (TEM). It was found that the coating of precursors on carbon nanotubes (CNTs) is continuous and the thickness is about 15 nm, after calcinated, the Y2O3:Eu3+ nanotubes are porous with the diameter size in the range of 50-80 nm and the length in micrometer scale. X-ray diffraction (XRD) patterns confirmed that the samples are cubic phase Y2O3 and the photoluminescence studies showed that the porous rare earth ions doped nanotubes possess characteristic emission of Eu3+, Tb3+, and Dy3+. This method may also provide a novel approach to produce other inorganic porous nanotubes used in catalyst and sensors.  相似文献   

19.
Biofunctionalization of CeF(3):Tb(3+) nanoparticles   总被引:1,自引:0,他引:1  
Kong DY  Wang ZL  Lin CK  Quan ZW  Li YY  Li CX  Lin J 《Nanotechnology》2007,18(7):075601
CeF(3):Tb(3+) nanoparticles (short pillar-like morphology with an average length and width of 11 and 5?nm, respectively) were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with a SiO(2)-NH(2) layer, these CeF(3):Tb(3+) nanoparticles can be conjugated with biotin molecules (activated by thionyl chloride) and further with avidin. The as-formed CeF(3):Tb(3+) nanoparticles, CeF(3):Tb(3+) nanoparticles functionalized with amino groups, biotin conjugated amino-functionalized CeF(3):Tb(3+) nanoparticles and biotinylated CeF(3):Tb(3+) nanoparticles bonded with avidin were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), UV/vis absorption spectra and luminescence spectra, respectively. The biofunctionalization of the CeF(3):Tb(3+) nanoparticles has less effect on their luminescence properties, i.e. they still show strong green emission (from Tb(3+), with (5)D(4)-(7)F(5) at 543?nm as the most prominent group), indicative of the great potential for these CeF(3):Tb(3+) nanoparticles to be used as biological fluorescence probes.  相似文献   

20.
以尿素为沉淀剂,柠檬酸为表面活性剂,通过水热法得到了非晶态的水合硝酸氧钇前驱体,进一步烧结处理后生成了立方相Y2 O3纳米晶.利用X-射线衍射( XRD)、扫描电镜( SEM)、透射电镜( TEM)、红外光谱( FTIR)和荧光光谱( PL)分别对所得样品的相结构、形貌粒度、表面结构以及发光性能进行研究.结果表明:当烧结温度从600℃升高到900℃,Y2 O3∶Eu3+纳米颗粒的结晶性增强,并实现了粒径调控,由13.0 nm增加至27.9 nm.随着Y2 O3∶Eu3+纳米颗粒尺寸的增加,比表面积减小会导致发光离子附近的表面晶格缺陷降低,同时纳米晶表面吸附水、硝酸根以及柠檬酸根等杂质离子逐渐被去除,减少了荧光猝灭中心,从而有利于增强荧光发射强度以及延长荧光寿命.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号