首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Selective growth of amorphous silica nanowires on a silicon wafer deposited with Pt thin film is reported. The mechanism of nanowire growth has been established to follow the vapour liquid solid (VLS) model via the PtSi phase acting as the catalyst. Nanowires grow with diameters ranging from 50 to 500?nm. These bottom-up grown nanowires exhibit photoluminescence with a stable emission of blue light at 430?nm under excitation. The effect of varying the seed layer thickness (Pt film) from 2 to 100?nm has been studied. It is observed that, above 10?nm thickness, a continuous layer of Pt(2)Si re-solidifies on the surface, inhibiting the growth of nanowires. The selectivity to the Pt thickness has been exploited to create regions of nanowires connected to conducting silicide (Pt(2)Si) simultaneously in a single furnace treatment. This novel approach has opened the gateways for realizing hybrid interconnects in silicon for various nano-optical applications such as the localization of light, low-dimensional waveguides for functional microphotonics, scanning near-field microscopy, and nanoantennae.  相似文献   

2.
Germanium nanowires were grown on germanium (111) substrate by ultra high vacuum chemical vapor deposition, via the vapor-liquid-solid growth mechanism, using digermane as gaseous precursor and gold as catalyst. The results show that the nanowire length depends on the diameter catalyst, the smaller the nanowire radius, the slower the nanowires grow.In order to fit the experimental data, we have used a simple model based on the Gibbs-Thomson effect and adapted to our growth conditions. This model was found to perfectly account for the catalyst size dependence of the experimental growth kinetics of germanium nanowires from digermane. From that, a critical radius of 6 nm was derived.  相似文献   

3.
In this work we have studied a way to control the growth of small diameter silicon nanowires by?the vapour-liquid-solid (VLS) mode. We have developed a method to deposit colloids with good density control, which is a key point for control of the nanowire (NW) diameter. We also show the high dependence of the allowed growth diameter on the growth conditions, opening the door to the realization of as-grown 2?nm silicon NWs. Finally we have developed a smart way to realize nanotrees in the same run, by tuning the growth conditions and using gold on the sidewall of nanowires, without the need for two catalyst deposition steps.  相似文献   

4.
We report the growth of germanium nanowires (Ge NWs) with single-step temperature method via vapour-liquid-solid (VLS) mechanism in the low pressure chemical vapour deposition (CVD) reactor at 300 degrees C, 280 degrees C, and 260 degrees C. The catalyst used in our experiment was Au nanoparticles with equivalent thicknesses of 0.1 nm (average diameter approximately 3 nm), 0.3 nm (average diameter approximately 4 nm), 1 nm (average diameter approximately 6 nm), and 3 nm (average diameter approximately 14 nm). The Gibbs-Thomson effect was used to explain our experimental results. The Ge NWs grown at 300 degrees C tend to have tapered structure while the Ge NWs grown at 280 degrees C and 260 degrees C tend to have straight structure. Tapering was caused by the uncatalysed deposition of Ge atoms via CVD mechanism on the sidewalls of nanowire and significantly minimised at lower temperature. We observed that the growth at lower temperature yielded Ge NWs with smaller diameter and also observed that the diameter and length of Ge NWs increases with the size of Au nanoparticles for all growth temperatures. For the same size of Au nanoparticles, Ge NWs tend to be longer with a decrease in temperature. The Ge NWs grown at 260 degrees C from 0.1-nm-thick Au had diameter as small as approximately 3 nm, offering an opportunity to fabricate high-performance p-type ballistic Ge NW transistor, to realise nanowire solar cell with higher efficiency, and also to observe the quantum confinement effect.  相似文献   

5.
MBE法生长ZnO纳米线阵列的结构和光学性能   总被引:1,自引:0,他引:1  
在氧等离子体辅助的MBE系统中, 以1 nm厚的Au薄膜为催化剂, 基于气?液?固(VLS)机制实现了低温ZnO纳米线阵列在Si(111)衬底表面的生长. 通过场发射扫描电子显微镜(FE-SEM)可以观察到, ZnO纳米线阵列垂直生长在衬底上, 直径为20~30 nm. X射线衍射(XRD)和高分辨透射电镜(HRTEM)结果表明: ZnO纳米线为六方纤锌矿结构, 具有沿c轴方向的择优取向. 光致发光(PL)谱显示在380 nm附近有强烈ZnO本征发射峰, 475~650 nm可见光区域有较强的缺陷导致的发射峰.  相似文献   

6.
GaAs nanowires were selectively grown by metal-organic vapour-phase epitaxy within a SiO(2) mask window pattern fabricated on a GaAs(111)B substrate surface. The nanowires were 100-3000?nm in height and 50-300?nm in diameter. The height decreased as the mask window diameter was increased or the growth temperature was increased from 700 to 800?°C. The dependence of the nanowire height on the mask window diameter was compared with a calculation, which indicated that the height was inversely proportional to the mask window diameter. This suggests that the migration of growth species on the nanowire side surface plays a major role. Tetrahedral GaAs grew at an early stage of nanowire growth but became hexagonal as the growth process continued. The calculated change in Gibbs free energy for nucleation growth of the crystals indicated that tetrahedra were energetically more favourable than hexagons. Transmission and scanning electron microscopy analyses of a GaAs nanowire showed that many twins developed along the [Formula: see text] B direction, suggesting that twins had something to do with the evolution of the nanowire shape from tetrahedron to hexagon.  相似文献   

7.
Needle-like silicon nanowires have been grown using gold colloid as the catalyst and silane (SiH4) as the precursor by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). Si nanowires produced by this method were unique with sharpness below 3 nm. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction technique (XRD) confirmed the single crystalline growth of the Si nanowires with (111) crystalline structure. Raman spectroscopy also has revealed the presence of crystalline Si in the grown Si nanowire body. In this research, presence of a gold nanoparticle on tip of the nanowires proved vapor–liquid–solid growth mechanism.  相似文献   

8.
The crystalline germanium nanowires (GeNWs) with a uniform graphitic carbon shell were prepared via a conventional low-pressure chemical vapor deposition method without any external catalyst. The GeNWs grown at low temperature (Tg < 500 degrees C) have a uniform diameter with a large expect ratio of more than 10(3). With increasing the growth temperature (Tg > 500 degrees C), however, the nanowire morphology is dramatically changed into a hybrid structure where highly dense Ge nanoparticles (GeNPs) with a diameter of 5-10 nm are attached onto the Ge nanowires. The nanostructures consist of crystalline Ge-core and very thin graphitic carbon shell. The possible mechanism of anisotropic growth and the control of morphological transition from uniform nanowires to NW/NP hybrid structures are discussed and demonstrated.  相似文献   

9.
采用高压脉冲激光沉积法(HP-PLD)研究了压强、金催化层厚度对钠掺杂氧化锌纳米线(ZnO:Na)生长的影响, 并制备了ZnO:Al薄膜/ZnO:Na纳米线阵列同质pn结器件。实验发现, 当金膜厚度为4.2 nm, 生长压强为3.33×104 Pa, 生长温度为875℃时, 可在单晶Si衬底上生长c轴取向性良好的ZnO纳米线阵列。X射线衍射和X射线光电子能谱综合分析证实了Na元素成功掺入ZnO纳米线晶格中。在低温(15 K)光致发光谱中, 观测到了一系列由Na掺杂ZnO产生引起的受主光谱指纹特征, 如中性受主束缚激子峰(3.356 eV, A0X)、导带电子到受主峰(3.312 eV, (e, A0))和施主受主对发光峰(3.233 eV, DAP)等。通过在ZnO:Al薄膜上生长ZnO:Na纳米线阵列形成同质结, 测得I-V曲线具有明显的整流特性, 证实了ZnO:Na纳米线具有良好的p型导电性能。  相似文献   

10.
GaN nanowires were grown using chemical vapor deposition with controlled aspect ratio. The catalyst and catalyst-diameter dependent growth kinetics is investigated in detail. We first discuss gold catalyst diameter dependent growth kinetics and subsequently compare with nickel and palladium catalyst. For different diameters of gold catalyst there was hardly any variation in the length of the nanowires but for other catalysts with different diameter a strong length variation of the nanowires was observed. We calculated the critical diameter dependence on adatoms pressure inside the reactor and inside the catalytic particle. This gives an increasing trend in critical diameter as per the order gold, nickel and palladium for the current set of experimental conditions. Based on the critical diameter, with gold and nickel catalyst the nanowire growth was understood to be governed by limited surface diffusion of adatoms and by Gibbs–Thomson effect for the palladium catalyst.  相似文献   

11.
Vapour‐liquid‐solid (VLS) techniques are popular routes for the scalable synthesis of semiconductor nanowires. In this article, in‐situ electron microscopy is used to correlate the equilibrium content of ternary (Au0.75Ag0.25–Ge and Au0.65Ag0.35–Ge) metastable alloys with the kinetics, thermodynamics and diameter of Ge nanowires grown via a VLS mechanism. The shape and geometry of the heterogeneous interfaces between the liquid eutectic and solid Ge nanowires varies as a function of nanowire diameter and eutectic alloy composition. The behaviour of the faceted heterogeneous liquid–solid interface correlates with the growth kinetics of the nanowires, where the main growth facet at the solid nanowire–liquid catalyst drop contact line lengthens for faster nanowire growth kinetics. Pronounced diameter dependent growth kinetics, as inferred from liquid–solid interfacial behaviour, is apparent for the synthesised nanowires. Direct in‐situ microscopy observations facilitates the comparison between the nanowire growth behaviour from ternary (Au–Ag–Ge) and binary (Au–Ge) eutectic systems.  相似文献   

12.
Liu D  Shi T  Tang Z  Zhang L  Xi S  Li X  Lai W 《Nanotechnology》2011,22(46):465601
We propose a novel technique of integrating silica nanowires to carbon microelectrode arrays on silicon substrates. The silica nanowires were grown on photoresist-derived three-dimensional carbon microelectrode arrays during carbonization of patterned photoresist in a tube furnace at 1000?°C under a gaseous environment of N(2) and H(2) in the presence of Cu catalyst, sputtered initially as a thin layer on the structure surface. Carbonization-assisted nucleation and growth are proposed to extend the Cu-catalyzed vapor-liquid-solid mechanism for the nanowire integration behaviour. The growth of silica nanowires exploits Si from the etched silicon substrate under the Cu particles. It is found that the thickness of the initial Cu coating layer plays an important role as catalyst on the morphology and on the amount of grown silica nanowires. These nanowires have lengths of up to 100 μm and diameters ranging from 50 to 200 nm, with 30 nm Cu film sputtered initially. The study also reveals that the nanowire-integrated microelectrodes significantly enhance the electrochemical performance compared to blank ones. A specific capacitance increase of over 13 times is demonstrated in the electrochemical experiment. The platform can be used to develop large-scale miniaturized devices and systems with increased efficiency for applications in electrochemical, biological and energy-related fields.  相似文献   

13.
In this paper we report on the effect of temperature on the electrical conductivity of amorphous and nanoporous (pores size around 0.5?nm) carbon nanowires. Poly(furfuryl alcohol) nanowires with diameter varying from 150 to 250?nm were synthesized by a template-based technique and upon pyrolysis yielded amorphous carbon nanowires with nanosized pores in them. We observed significant (as high as 700%) decrease in electrical resistance when the nanowire surface temperature was increased from room temperature to 160?°C. On the basis of the experimental and microscopy evidence, we infer a thermally activated carrier transport mechanism to be the primary electrical transport mechanism, at elevated temperatures, in these semiconducting, amorphous, and nanoporous carbon nanowires.  相似文献   

14.
Visible and near-infrared photoluminescence (PL) at room temperature is reported from Si nanowires (NWs) grown by chemical vapor deposition from TiSi2 catalyst sites. NWs grown with average diameter of 20 nm were etched and oxidized to thin and passivate the wires. The PL emission blue shifted continuously with decreasing nanowire diameter. Slowed oxidation was observed for small nanowire diameters and provides a high degree of control over the emission wavelength. Transmission electron microscopy, PL, and time-resolved PL data are fully consistent with quantum confinement of charge carriers in the Si nanowire core being the source of luminescence. These light emitting nanowires could find application in future CMOS-compatible photonic devices.  相似文献   

15.
For the first time silicon nanowires have been grown on indium (In) coated Si (100) substrates using e-beam evaporation at a low substrate temperature of 300 °C. Standard spectroscopic and microscopic techniques have been employed for the structural, morphological and compositional properties of as grown Si nanowires. The as grown Si nanowires have randomly oriented with an average length of 600 nm for a deposition time of 15 min. As grown Si nanowires have shown indium nanoparticle (capped) on top of it confirming the Vapor Liquid Solid (VLS) growth mechanism. Transmission Electron Microscope (TEM) measurements have revealed pure and single crystalline nature of Si nanowires. The obtained results have indicated good progress towards finding alternative catalyst to gold for the synthesis of Si nanowires.  相似文献   

16.
YY Lü  H Cui  GW Yang  CX Wang 《Nano letters》2012,12(8):4032-4036
Si nanowires have received continued increased attention because they keep the promise of monolithic integration of high-performance semiconductors with new functionality into existing silicon technology. Most Si nanowires are grown by vapor-liquid-solid mechanism, and despite many years of study, this growth mechanism remains under lively debate. For instance, contradictory results have been reported on the effect of diameter size on nanowire growth rate. Here, we developed a universal kinetic model of Si nanowire growth based on surface diffusion which takes into account adatom diffusion from the sidewall and substrate surface into the liquid droplet as well as the Gibbs-Thomson effect. Our analysis shows that the diameter independence for Si nanowires is affected by the interplay between the Gibbs-Thomson effect and the surface diffusion, whereas the diameter dependence is mainly influenced by the Gibbs-Thomson effect. The results based on the proposed model are in good agreement with experimental data.  相似文献   

17.
Hochbaum AI  Fan R  He R  Yang P 《Nano letters》2005,5(3):457-460
Silicon nanowires were synthesized, in a controlled manner, for their practical integration into devices. Gold colloids were used for nanowire synthesis by the vapor-liquid-solid growth mechanism. Using SiCl4 as the precursor gas in a chemical vapor deposition system, nanowire arrays were grown vertically aligned with respect to the substrate. By manipulating the colloid deposition on the substrate, highly controlled growth of aligned silicon nanowires was achieved. Nanowire arrays were synthesized with narrow size distributions dictated by the seeding colloids and with average diameters down to 39 nm. The density of wire growth was successfully varied from approximately 0.1-1.8 wires/microm2. Patterned deposition of the colloids led to confinement of the vertical nanowire growth to selected regions. In addition, Si nanowires were grown directly into microchannels to demonstrate the flexibility of the deposition technique. By controlling various aspects of nanowire growth, these methods will enable their efficient and economical incorporation into devices.  相似文献   

18.
实验通过硅粉和氯化钙盐高温处理, 以熔融CaCl2高温下产生的蒸气作为特殊的蒸发载体, 在1300℃条件下通过热蒸发法在石墨基板表面获得了具有草坪状排列的特殊形状的纳米线。系列测试分析表明, 该纳米线的直径为50~400 nm, 长度约为几个微米, 且为面心立方结构。另外, 系统分析显示传统的纳米线生长模型如气-液-固(VLS)生长机制不能很好地解释该二氧化硅纳米线在石墨纸上的生长过程, 本文提出的一种增强的气-液-固生长机制, 可以很好地解释上述纳米线的生长过程。  相似文献   

19.
Mechanical elasticity of hexagonal wurtzite GaN nanowires with hexagonal cross sections grown through a vapour-liquid-solid (VLS) method was investigated using a three-point bending method with a digital-pulsed force mode (DPFM) atomic force microscope (AFM). In a diameter range of 57-135?nm, bending deflection and effective stiffness, or spring constant, profiles were recorded over the entire length of end-supported GaN nanowires and compared to the classic elastic beam models. Profiles reveal that the bending behaviour of the smallest nanowire (57.0?nm in diameter) is as a fixed beam, while larger nanowires (89.3-135.0?nm in diameter) all show simple-beam boundary conditions. Diameter dependence on the stiffness and elastic modulus are observed for these GaN nanowires. The GaN nanowire of 57.0?nm diameter displays the lowest stiffness (0.98?N?m(-1)) and the highest elastic modulus (400 ± 15?GPa). But with increasing diameter, elastic modulus decreases, while stiffness increases. Elastic moduli for most tested nanowires range from 218 to 317?GPa, which approaches or meets the literature values for bulk single crystal and GaN nanowires with triangular cross sections from other investigators. The present results together with further tests on plastic and fracture processes will provide fundamental information for the development of GaN nanowire devices.  相似文献   

20.
Diameter-dependent growth direction of epitaxial silicon nanowires   总被引:1,自引:0,他引:1  
Schmidt V  Senz S  Gösele U 《Nano letters》2005,5(5):931-935
We found that silicon nanowires grown epitaxially on Si (100) via the vapor-liquid-solid growth mechanism change their growth direction from 111 to 110 at a crossover diameter of approximately 20 nm. A model is proposed for the explanation of this phenomenon. We suggest that the interplay of the liquid-solid interfacial energy with the silicon surface energy expressed in terms of an edge tension is responsible for the change of the growth direction. The value of the edge tension is estimated by the product of the interfacial thickness with the surface energy of silicon. For large diameters, the direction with the lowest interfacial energy is dominant, whereas for small diameters the surface energy of the silicon nanowire determines the preferential growth direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号