首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A novel oxide-silicon-oxide buffer structure to prevent damage to a plastic substrate in an ultralow temperature (<120/spl deg/C) polycrystalline silicon thin-film transistor (ULTPS TFT) process is presented. Specifically, an amorphous silicon film was inserted as an absorption layer into buffer oxide films. The maximum endurable laser energy was increased from 200 to 800 mJ/cm/sup 2/. The fabricated ULTPS nMOS TFT showed a performance with mobility of 30 cm/sup 2//Vs.  相似文献   

2.
We studied the bias-induced changes in the performance of the poly-Si thin-film transistor (TFT) by metal-induced crystallization of amorphous silicon through a cap layer (MICC) poly-Si. The p-channel poly-Si TFT exhibited a field-effect mobility of 101 cm/sup 2//V/spl middot/s and a minimum leakage current of <1.0/spl times/10/sup -12/ A//spl mu/m at V/sub ds/=-10 V. The MICC poly-Si TFT performance changes little by either gate or hot-carrier bias stress. The better stability appears to be due to the smooth surface of MICC poly-Si, which is /spl sim/2 nm that is much smaller than that (13 nm) of a laser-annealed poly-Si.  相似文献   

3.
High-performance polycrystalline silicon (poly-Si) thin-film transistors (TFTs) have been fabricated using metal-induced crystallization followed by laser annealing (L-MIC). Laser annealing after MIC was found to yield a major improvement to the electrical characteristics of poly-Si TFTs. At a laser fluence of 330 mJ/cm/sup 2/, the field effect mobility increased from 71 to 239 cm/sup 2//Vs, and the minimum leakage current reduced from around 3.0/spl times/10/sup -12/ A//spl mu/m to 2.9/spl times/10/sup -13/ A//spl mu/m at a drain voltage of 5 V. In addition, the dependence of the TFT characteristics on the laser energy density was much weaker than that for conventional excimer laser annealed poly-Si TFTs.  相似文献   

4.
This paper developed a novel polycrystalline silicon (poly-Si) thin-film transistor (TFT) structure with the following special features: 1) a new oxide-nitride-oxynitride (ONO) multilayer gate dielectric to reduce leakage current, improved breakdown characteristics, and enhanced reliability; and 2) raised source/drain (RSD) structure to reduce series resistance. These features were used to fabricate high-performance RSD-TFTs with ONO gate dielectric. The ONO gate dielectric on poly-Si films shows a very high breakdown field of 9.4 MV/cm, a longer time dependent dielectric breakdown, larger Q/sub BD/, and a lower charge-trapping rate than single-layer plasma-enhanced chemical vapor deposition tetraethooxysilane oxide or nitride. The fabricated RSD-TFTs with ONO gate dielectric exhibited excellent transfer characteristics, high field-effect mobility of 320 cm/sup 2//V/spl middot/s, and an on/off current ratio exceeding 10/sup 8/.  相似文献   

5.
We demonstrate a manufacturable, large-area separation approach for producing high-performance polycrystalline silicon thin-film transistors on flexible plastic substrates. The approach allows the use of high growth-temperature gate oxides and removes the need for hydrogenation. The process flow starts with the deposition of a nano-structured high surface-to-volume ratio film on a reuseable "mother" substrate. This film functions as a sacrificial release layer and is Si-based for process compatibility. After high-temperature TFT fabrication (up to 1100/spl deg/C) is carried to completion on the sacrificial film coated mother substrate, a thick plastic top layer film is applied, and the sacrificial layer is removed by chemical attack. By using this separation process, the temperature, smoothness, and mechanical limitations posed by plastic substrates are completely circumvented. Both excellent n-channel and p-channel TFTs on plastic have been produced. We report here on p-channel TFTs on separated plastic with a linear field effect (hole) mobility of 174 cm/sup 2//V/spl middot/s, on/off current ratio of >10/sup 8/ at V/sub ds/=-0.1 V, off current of <10/sup -11/ A//spl mu/m-channel-width at V/sub ds/=-0.1 V, sub-V/sub t/ swing of /spl sim/200 mV/dec, and threshold voltage of -1.1 V.  相似文献   

6.
This paper addresses the low-temperature deposition processes and electronic properties of silicon based thin film semiconductors and dielectrics to enable the fabrication of mechanically flexible electronic devices on plastic substrates. Device quality amorphous hydrogenated silicon (a-Si:H), nanocrystalline silicon (nc-Si), and amorphous silicon nitride (a-SiN/sub x/) films and thin film transistors (TFTs) were made using existing industrial plasma deposition equipment at the process temperatures as low as 75/spl deg/C and 120/spl deg/C. The a-Si:H TFTs fabricated at 120/spl deg/C demonstrate performance similar to their high-temperature counterparts, including the field effect mobility (/spl mu//sub FE/) of 0.8 cm/sup 2/V/sup -1/s/sup -1/, the threshold voltage (V/sub T/) of 4.5 V, and the subthreshold slope of 0.5 V/dec, and can be used in active matrix (AM) displays including organic light emitting diode (OLED) displays. The a-Si:H TFTs fabricated at 75/spl deg/C exhibit /spl mu//sub FE/ of 0.6 cm/sup 2/V/sup -1/s/sup -1/, and V/sub T/ of 4 V. It is shown that further improvement in TFT performance can be achieved by using n/sup +/ nc-Si contact layers and plasma treatments of the interface between the gate dielectric and the channel layer. The results demonstrate that with appropriate process optimization, the large area thin film Si technology suits well the fabrication of electronic devices on low-cost plastic substrates.  相似文献   

7.
In this letter, a novel process for fabricating p-channel poly-Si/sub 1-x/Ge/sub x/ thin-film transistors (TFTs) with high-hole mobility was demonstrated. Germanium (Ge) atoms were incorporated into poly-Si by excimer laser irradiation of a-Si/sub 1-x/Ge/sub x//poly-Si double layer. For small size TFTs, especially when channel width/length (W/L) was less than 2 /spl mu/m/2 /spl mu/m, the hole mobility of poly-Si/sub 1-x/Ge/sub x/ TFTs was superior to that of poly-Si TFTs. It was inferred that the degree of mobility enhancement by Ge incorporation was beyond that of mobility degradation by defect trap generation when TFT size was shrunk to 2 /spl mu/m/2 /spl mu/m. The poly-Si/sub 0.91/Ge/sub 0.09/ TFT exhibited a high-hole mobility of 112 cm/sup 2//V-s, while the hole mobility of the poly-Si counterpart was 73 cm/sup 2//V-s.  相似文献   

8.
Fabrication of n-channel polycrystalline silicon thin-film transistors (poly-Si TFTs) at a low temperature is reported. 13.56 MHz-oxygen plasma at a 100 W, 130 Pa at 250/spl deg/C for 5 min, and heat treatment at 260/spl deg/C with 1.3/spl times/10/sup 6/-Pa-H/sub 2/O vapor for 3 h were applied to reduction of the density of defect states in 25-nm-thick silicon films crystallized by irradiation of a 30 ns-pulsed XeCl excimer laser. Defect reduction was numerically analyzed. Those treatments resulted in a high carrier mobility of 830 cm/sup 2//Vs and a low threshold voltage of 1.5 V at a laser crystallization energy density of 285 mJ/cm/sup 2/.  相似文献   

9.
A jet-printed digital-lithographic method, in place of conventional photolithography, was used to fabricate 64 /spl times/ 64 pixel (300 /spl mu/m pitch) matrix addressing thin-film transistor (TFT) arrays. The average hydrogenated amorphous silicon TFT device within an array had a threshold voltage of /spl sim/3.5 V, carrier mobility of 0.7 cm/sup 2//V/spl middot/s, subthreshold slope of 0.76 V/decade, and an on/off ratio of 10/sup 8/.  相似文献   

10.
We fabricated poly-Si thin-film transistors at 150/spl deg/C using inductively coupled plasma (ICP) chemical vapor deposition (CVD) and excimer laser annealing (ELA). An Si film deposited by ICP-CVD was recrystallized using ELA, and a poly-Si film with large grains exceeding 5000 /spl Aring/ in diameter was fabricated. An SiO/sub 2/ film with a high breakdown field was deposited by ICP-CVD. A high mobility exceeding 100 cm/sup 2//Vs and a low subthreshold swing of 0.76 V/dec were successfully achieved.  相似文献   

11.
Polycrystalline silicon (poly-Si) films consisting of dish-like and wadding-like domains were obtained with solution-based metal-induced crystallization (SMIC) of amorphous silicon. The Hall mobility of poly-Si was much higher in dish-like domains than in wadding-like domains. Thin-film transistors (TFTs) have been prepared using those two kinds of poly-Si films as the active layer, followed by the phosphosilicate glass (PSG) nickel gettering. The field effect mobility of dish-like domain poly-Si TFTs and wadding-like poly-Si TFTs were 70/spl sim/80 cm/sup 2//V/spl middot/s and 40/spl sim/50 cm/sup 2//V/spl middot/s, respectively. With a multi-gate structure, the leakage current of poly-Si TFTs was reduced by 1 to 2 orders of magnitude. In addition, the gate-induced drain leakage current (GIDL) and uniformity of the drain current distribution were also improved. P-type TFTs fabricated using SMIC exhibited excellent reliability.  相似文献   

12.
High-performance nickel-induced laterally crystallized (NILC) p-channel poly-Si thin-film transistors (TFTs) have been fabricated without hydrogenation. Two different thickness of Ni seed layers are selected to make high-performance p-type TFTs. A very thin seed layer (e.g., 5 /spl Aring/) leads to marginally better performance in terms of transconductance (Gm) and threshold voltage (V/sub th/) than the case of a 60 /spl Aring/ Ni seed layer. However, the p-type poly-Si TFTs crystallized by the very thin Ni seeding result in more variation in both V/sub th/ and G/sub m/ from transistor to transistor. It is believed that differences in the number of laterally grown polycrystalline grains along the channel cause the variation seen between 5 /spl Aring/ NILC TFTs compared to 60-/spl Aring/ NILC TFTs. The 60 /spl Aring/ NILC nonhydrogenated TFTs show consistent high performance, i.e., typical electrical characteristics have a linear field-effect hole mobility of 156 cm/sup 2//V-S, subthreshold swing of 0.16 V/dec, V/sub th/ of -2.2 V, on-off ratio of >10/sup 8/, and off-current of <1/spl times/10/sup -14/ A//spl mu/m when V/sub d/ equals -0.1 V.  相似文献   

13.
This letter reports the implementation of a bottom-gate MOSFET, which possesses the following fully self-aligned structural features: 1) self-aligned source-drain to bottom-gate; 2) self-aligned thick source-drain and thin channel; and 3) self-aligned and mask-free lightly doped drain (LDD). The complete self-alignment is realized by combining a conventional ion implantation and a subsequent chemical-mechanical polishing (CMP) step. The process is applied to poly-Si films crystallized from an a-Si film deposited by LPCVD using a metal-induced unilateral crystallization technique, and is grain-enhanced further in a high temperature annealing step. Deep submicron fully self-aligned bottom-gate pMOS transistors with channel length less than 0.5 /spl mu/m are fabricated. The measured performance parameters include threshold voltage of -0.43 V, subthreshold swing of 113 mV/dec, effective hole mobility of 147 cm/sup 2//V-s, off-current of 0.17 pA//spl mu/m, and on-off current ratio of 7.1/spl times/10/sup 8/.  相似文献   

14.
A four-mask-processed polycrystalline silicon thin-film transistor (poly-Si TFT) is fabricated using 50-pulse KrF excimer laser to crystallize an edge-thickened amorphous silicon (a-Si) active island without any shrinkage. This method introduces a temperature gradient in the island to enlarge grains from the edge, especially when the channel width is narrow. The grain boundaries across the width of the channel suppress the leakage current and the drain-induced barrier lowering. Moreover, the proposed poly-Si TFT with a channel length of L = 2 /spl mu/m and a channel width of W = 1.2 /spl mu/m possesses a high field-effect mobility of 260 cm/sup 2//Vs and an on/off current ratio of 2.31 /spl times/ 10/sup 8/.  相似文献   

15.
Thin-film transistors (TFTs) were fabricated on polyimide and glass substrates at low temperatures using microwave ECR-CVD deposited amorphous and nanocrystalline silicon as active layers. The amorphous Si TFT fabricated at 200 /spl deg/C on the polyimide foil had a saturation region field effect mobility of 4.5 cm/sup 2//V-s, a linear region mobility of 5.1 cm/sup 2//V-s, a threshold voltage of 3.7 V, a subthreshold swing of 0.69 V/decade, and an ON/OFF current ratio of 7.9 /spl times/ 10/sup 6/. This large mobility and high ON/OFF current ratio were attributed to the high-quality channel materials with less dangling bond defect states. Nanocrystalline Si TFTs fabricated on glass substrates at 400 /spl deg/C showed a saturation region mobility of 14.1 cm/sup 2//V-s, a linear region mobility of 15.3 cm/sup 2//V-s, a threshold voltage of 3.6 V, and an ON/OFF current ratio of 6.7 /spl times/ 10/sup 6/. TFT performance was mostly independent of substrate type when fabrication conditions were the same.  相似文献   

16.
P-channel dual-gated thin-film silicon-on-insulator (DG-TFSOI) MOSFETs have been fabricated with an isolated buried polysilicon backgate in an SOI island formed by epitaxial lateral overgrowth (ELO) of silicon. This structure allows individual operation of both the top and back gates rather than the conventional common backgate structure. When fully-depleted, the buried gate is used to individually shift the top gate threshold voltage (V/sub T/). A linear shift of /spl Delta/V/sub T,top///spl Delta/V/sub G,back/ of 0.5 V/V was achieved with a thin buried oxide. The effective density of interface traps (D/sub it/) for the backgate polysilicon-oxide SOI interface was measured to be 1.8/spl times/10/sup 11/ #/cm/sup 2//spl middot/eV as compared to the substrate-oxide of 1.1/spl times/10/sup 11/ #/cm/sup 2//spl middot/eV.  相似文献   

17.
We report investigations of Si face 4H-SiC MOSFETs with aluminum (Al) ion-implanted gate channels. High-quality SiO/sub 2/-SiC interfaces are obtained both when the gate oxide is grown on p-type epitaxial material and when grown on ion-implanted regions. A peak field-effect mobility of 170 cm/sup 2//V/spl middot/s is extracted from transistors with epitaxially grown channel region of doping 5/spl times/10/sup 15/ cm/sup -3/. Transistors with implanted gate channels with an Al concentration of 1/spl times/10/sup 17/ cm/sup -3/ exhibit peak field-effect mobility of 100 cm/sup 2//V/spl middot/s, while the mobility is 51 cm/sup 2//V/spl middot/s for an Al concentration of 5/spl times/10/sup 17/ cm/sup -3/. The mobility reduction with increasing acceptor density follows the same functional relationship as in n-channel Si MOSFETs.  相似文献   

18.
We report n- and p-channel polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated with a rapid joule heating method. Crystallization of 50-nm-thick silicon films and activation of phosphorus and boron atoms were successfully achieved by rapid heat diffusion via 300-nm-thick SiO/sub 2/ intermediate layers from joule heating induced by electrical current flowing in chromium strips. The effective carrier mobility and the threshold voltage were 570 cm/sup 2//Vs and 1.8 V for n-channel TFTs, and 270 cm/sup 2//Vs and -2.8 V for p-channel TFTs, respectively.  相似文献   

19.
An ultrathin vertical channel (UTVC) MOSFET with an asymmetric gate-overlapped low-doped drain (LDD) is experimentally demonstrated. In the structure, the UTVC (15 nm) was obtained using the cost-effective solid phase epitaxy, and the boron-doped poly-Si/sub 0.5/Ge/sub 0.5/ gate was adopted to adjust the threshold voltage. The fabricated NMOSFET offers high-current drive due to the lightly doped (<1/spl times/10/sup 15/ cm/sup -3/) channel, which suppresses the electron mobility degradation. Moreover, an asymmetric gate-overlapped LDD was used to suppress the offstate leakage current and reduce the source/drain series resistance significantly as compared to the conventional symmetrical LDD. The on-current drive, offstate leakage current, subthreshold slope, and DIBL for the fabricated 50-nm devices are 325 /spl mu/A//spl mu/m, 8/spl times/10/sup -9/ /spl mu/A//spl mu/m, 87 mV/V, and 95 mV/dec, respectively.  相似文献   

20.
We fabricated CMOS circuits from polycrystalline silicon films on steel foil substrates at process temperatures up to 950/spl deg/C. The substrates were 0.2-mm thick steel foil coated with 0.5-/spl mu/m thick SiO/sub 2/. We employed silicon crystallization times ranging from 6 h (600/spl deg/C) to 20 s (950/spl deg/C). Thin-film transistors (TFTs) were made in either self-aligned or nonself-aligned geometries. The gate dielectric was SiO/sub 2/ made by thermal oxidation or from deposited SiO/sub 2/. The field-effect mobilities reach 64 cm/sup 2//Vs for electrons and 22 cm/sup 2//Vs for holes. Complementary metal-oxide-silicon (CMOS) circuits were fabricated with self-aligned TFT geometries, and exhibit ring oscillator frequencies of 1 MHz. These results lay the groundwork for polycrystalline silicon circuitry on flexible substrates for large-area electronic backplanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号