首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Successful use of growth factors in therapeutic and bioprocessing applications requires overcoming two attenuation mechanisms: growth factor depletion and receptor down-regulation. Current ameliorative strategies use physiologically inappropriate high growth-factor concentrations, along with periodic media refeeding in vitro and reinjection or controlled-release devices in vivo. We demonstrate a new approach derived from understanding how these attenuation mechanisms arise from ligand/receptor trafficking processes. Specifically, a recombinant epidermal growth factor (EGF) mutant with reduced receptor binding affinity is a more potent mitogenic stimulus for fibroblasts than natural EGF or transforming growth factor alpha because of its altered trafficking properties.  相似文献   

2.
The small GTP-binding protein ADP-ribosylation factor-1 (ARF1) regulates intracellular transport by modulating the interaction of coat proteins with the Golgi complex. Coat protein association with Golgi membranes requires activated, GTP-bound ARF1, whereas GTP hydrolysis catalyzed by an ARF1-directed GTPase-activating protein (GAP) deactivates ARF1 and results in coat protein dissociation. We have recently cloned a Golgi-associated ARF GAP. Overexpression of GAP was found to result in a phenotype that reflects ARF1 deactivation (Aoe, T., Cukierman, E., Lee, A., Cassel, D., Peters, P. J., and Hsu, V. W. (1997) EMBO J. 16, 7305-7316). In this study, we used this phenotype to define domains in GAP that are required for its function in vivo. As expected, mutations in the amino-terminal part of GAP that were previously found to abolish ARF GAP catalytic activity in vitro abrogated ARF1 deactivation in vivo. Significantly, truncations at the carboxyl-terminal part of GAP that did not affect GAP catalytic activity in vitro also diminished ARF1 deactivation. Thus, a noncatalytic domain is required for GAP activity in vivo. This domain may be involved in the targeting of GAP to the Golgi membrane.  相似文献   

3.
The bovine papillomavirus E5 transforming protein appears to activate both the epidermal growth factor receptor (EGF-R) and the platelet-derived growth factor receptor (PDGF-R) by a ligand-independent mechanism. To further investigate the ability of E5 to activate receptors of different classes and to determine whether this stimulation occurs through the extracellular domain required for ligand activation, we constructed chimeric genes encoding PDGF-R and EGF-R by interchanging the extracellular, membrane, and cytoplasmic coding domains. Chimeras were transfected into NIH 3T3 and CHO(LR73) cells. All chimeras expressed stable protein which, upon addition of the appropriate ligand, could be activated as assayed by tyrosine autophosphorylation and biological transformation. Cotransfection of E5 with the wild-type and chimeric receptors resulted in the ligand-independent activation of receptors, provided that a receptor contained either the transmembrane domain of the PDGF-R or the cytoplasmic domain of the EGF-R. Chimeric receptors that contained both of these domains exhibited the highest level of E5-induced biochemical and biological stimulation. These results imply that E5 activates the PDGF-R and EGR-R by two distinct mechanisms, neither of which specifically involves the extracellular domain of the receptor. Consistent with the biochemical and biological activation data, coimmunoprecipitation studies demonstrated that E5 formed a complex with any chimera that contained a PDGF-R transmembrane domain or an EGF-R cytoplasmic domain, with those chimeras containing both domains demonstrating the greatest efficiency of complex formation. These results suggest that although different domains of the PDGF-R and EGF-R are required for E5 activation, both receptors are activated directly by formation of an E5-containing complex.  相似文献   

4.
The membrane anchored form of human heparin-binding epidermal growth factor-like growth factor (HB-EGF) acts as the diphtheria toxin (DT) receptor. Transfection of human HB-EGF cDNA into mouse LC cells, L cells stably expressing DRAP27, conferred sensitivity to DT, but transfection of mouse HB-EGF cDNA did not. To define the essential regions of HB-EGF that serve as the functional DT receptor, we examined the sensitivity to DT and DT binding of cells expressing several human/mouse HB-EGF chimeras. It was found that DT binds to the EGF-like domain of the human HB-EGF. However, mouse HB-EGF does not serve as a functional DT receptor due to non-conserved amino acid substitutions in this domain. In addition, CRM197, a non-toxic mutant of DT, inhibited strongly the mitogenic activity of the secreted form of human HB-EGF, but not of mouse HB-EGF and other EGF receptor-binding growth factors. These results confirmed further that DT interacts with the EGF-like domain of HB-EGF and that this interaction is specific for human HB-EGF.  相似文献   

5.
Nck is a small protein composed of Src homology regions (SH) 2 and 3, paralleling the adaptors c-Crk and Grb2/Ash, but its function remains enigmatic. To clarify Nck signaling, a human brain cDNA library was searched for targets of the SH3 moiety of Nck. A novel molecule detected therefrom (referred to as Nck-, Ash- and phospholipase Cgamma-binding protein 4) contained proline-rich sequences and, through the function of one of them, interacted with the middle SH3 domain of Nck. A NAP4 fusion peptide exhibited an affinity for Nck, Ash and phospholipase Cgamma in whole cell lysates. NAP4 also had an SH2 domain, which could bind to activated EGF receptor. These intermolecular interactions imply the intricacy of Nck-mediated signaling around the receptor protein-tyrosine kinases. In addition, NAP4 bore a putative nuclear localization signal and a Q-run/P-run composite, both characteristic of nuclear proteins, and might therefore relate to the presence of Nck in the cellular nucleus.  相似文献   

6.
Abnormal mesoderm movement, leading to defects in axial organization, is observed in mouse and Xenopus laevis embryos deprived of platelet-derived growth factor (PDGF) AA signaling. However, neither the cellular response to PDGF nor the signaling pathways involved are understood. Herein we describe an in vitro assay to examine the direct effect of PDGF AA on aggregates of Xenopus embryonic mesoderm cells. We find that PDGF AA stimulates aggregates to spread on fibronectin. This behavior is similar to that of migrating mesoderm cells in vivo that spread and form lamellipodia and filipodia on contact with fibronectin-rich extracellular matrix. We go on to show two lines of evidence that implicate phosphatidylinositol 3-kinase (PI3K) as an important component of PDGF-induced mesoderm cell spreading. (i) The fungal metabolite wortmannin, which inhibits signaling by PI3K, blocks mesoderm spreading in response to PDGF AA. (ii) Activation of a series of receptors with specific tyrosine-to-phenylalanine mutations revealed PDGF-induced spreading of mesoderm cells depends on PI3K but not on other signaling molecules that interact with PDGF receptors including phospholipase C gamma, Ras GTPase-activating protein, and phosphotyrosine phosphatase SHPTP2. These results indicate that a PDGF signal, medicated by PI3K, can facilitate embryonic mesoderm cell spreading on fibronectin. We propose that PDGF, produced by the ectoderm, influences the adhesive properties of the adjacent mesoderm cells during gastrulation.  相似文献   

7.
C3H10T1/2 fibroblasts transformed by the minimal expression of oncogenic Ha-Ras (V12H10 cells) or N-Ras (K61N10 cells) have constitutive mitogen-activated protein kinase (MAPK) activity and proliferate in serum-free medium. The constitutive MAPK activity and serum-independent proliferation of V12H10 cells are sensitive to the growth factor antagonist, suramin (Hamilton, M., and Wolfman, A. (1998) Oncogene 16, 1417-1428), suggesting that Ha-Ras-mediated regulation of the MAPK cascade is dependent upon the action of an autocrine factor. Serum-free medium conditioned by V12H10 cells contains an activity that stimulates MAPK activity in quiescent fibroblasts. This MAPK stimulatory activity could be specifically blocked by the epidermal growth factor receptor (EGFR) inhibitors, PD153035 and PD158780. These inhibitors also blocked the serum-independent proliferation of V12H10 cells. Immunodepletion of conditioned medium with antibodies to transforming growth factor alpha and EGF significantly inhibited its ability to stimulate MAPK activity. Stable transfection of EGFR-negative NR6 and EGFR-positive Swiss3T3 cells with oncogenic (G12V)Ha-Ras demonstrated that only the Ha-Ras-transfected Swiss 3T3 cells possessed constitutive MAPK activity, and this activity was sensitive to PD153035. These data suggest that autocrine activation of the EGFR is required for the regulation of the MAPK cascade in cells minimally expressing oncogenic Ha-Ras.  相似文献   

8.
The role of phosphatidylinositol 3'-kinase (PI 3'-kinase) activity in platelet-derived growth factor (PDGF)-stimulated tyrosine phosphorylation of focal adhesion kinase (p125FAK) and paxillin has been examined. The tyrosine phosphorylation of p125FAK and paxillin in response to PDGF was markedly inhibited by wortmannin in a dose-dependent manner. PDGF-stimulated PI 3'-kinase activity, membrane ruffle formation, and tyrosine phosphorylation of p125FAK and paxillin were all inhibited by the same low concentrations of wortmannin (>90% inhibition at 40nM). In contrast, tyrosine phosphorylation of p125FAK and paxillin in response to bombesin, endothelin, and phorbol 12,13-dibutyrate was not inhibited by wortmannin in these cells. Furthermore, LY294002, an inhibitor of PI 3'-kinase structurally unrelated to wortmannin, also inhibited PDGF-stimulated p125FAK tyrosine phosphorylation. PDGF was shown to stimulate the tyrosine phosphorylation of p125FAK in porcine aortic endothelial (PAE) cells transfected with the wild type PDGF-beta receptors, but not in PAE cells transfected with PDGF-beta receptors in which the PI 3'-kinase binding sites (Tyr-740/751) were replaced by phenylalanine. PDGF-stimulated, PI 3'-kinase-dependent tyrosine phosphorylation of p125FAK was not inhibited by rapamycin, and thus it was dissociated from the activation of p70 S6 kinase, previously identified as a molecular downstream target of PI 3'-kinase. Thus, we have identified a PI 3'-kinase-dependent signal transduction pathway in the action of PDGF, which leads to the phosphorylation of p125FAK and paxillin.  相似文献   

9.
We compared the intracellular insulin-like growth factor-1 (IGF-1) and insulin signaling pathways in Rat1 fibroblasts expressing the equivalent number of insulin receptors and endogenous IGF-1 receptors. Insulin and IGF-1 stimulated tyrosine phosphorylation of IRS-1 and Shc in a similar dose- and time-dependent manner. The time course of Shc phosphorylation by both IGF-1 and insulin was slower than that of IRS-1. Both phosphorylated IRS-1 and Shc associated with Grb2.Sos complexes, leading to p21ras activation. To compare the functional importance of p21ras for IGF-1-and insulin-induced DNA synthesis, single cell microinjection studies were performed. BrdU incorporation into newly synthesized DNA was measured by immunofluorescence microscopy to assess the functional importance of p21ras. Both IGF-1 and insulin stimulated BrdU incorporation, but the effect of IGF-1 was greater. Microinjection of anti-p21ras antibody completely inhibited both IGF-1-and insulin-induced DNA synthesis, indicating the central role of p21ras in signaling by both hormones. Signal transduction from these receptors to Grb2.Sos complexes can occur through IRS-1 and/or Shc. To assess these two possible pathways, we performed Western blots for Grb2 in anti-Shc and anti-IRS-1 immunoprecipitates and found that 5-fold more Grb2 was associated with Shc than with IRS-1 after either IGF-1 or insulin stimulation. Microinjection of anti-Shc antibody inhibited IGF-1 and insulin stimulation of DNA synthesis by 78% and 74%, respectively. By microinjecting Shc subdomains of GST fusion proteins, we found that Shc N-terminus, but not the Shc SH2, was the functionally important domain through which Shc interacts with IGF-1 and insulin receptors. Insulin stimulation caused hyperphosphorylation and decreased electrophoretic mobility of Sos, and a similar effect was seen with IGF-1, although the time course was delayed compared with insulin. Finally, IGF-1 activated mitogen-activated proten kinase activity more effectively than insulin. These data indicate that Shc, rather than IRS-1, appears to be the predominant functional link to Grb2.Sos complexes from the IGF-1 receptor, as it is from the insulin receptor. Although IGF-1 and insulin stimulate cell cycle progression with similar coupling mechanisms from the receptor to Shc, to Grb2.Sos, to p21ras, the delayed IGF-1 induced mobility shift of Sos could lead to, at least in part, more efficient coupling to mitogen-activated protein kinase. These findings might explain the greater mitogenic activity of IGF-1 compared with insulin.  相似文献   

10.
11.
The effects of vitamin K3 (VK3) on DNA synthesis, cell proliferation and mitogen-activated protein kinase pathway were investigated in G0-arrested NIH 3T3 fibroblasts. VK3 (5 microM) alone stimulates DNA synthesis by 40% and moderately increases the mitogenic effects of EGF, which is preceded by a rapid phosphorylation of the extracellular signal-regulated kinases (ERKs). At 20 microM, VK3 had an antiproliferative effect. VK3 alone (5 and 50 microM) or in concert with EGF increases the activity of ERK2 (by 2.5 and 5 fold, respectively). Our studies demonstrate that the activation of ERKs by VK3 alone, or VK3 plus EGF can promote either stimulatory or inhibitory effects on the mitogenic signal.  相似文献   

12.
beta-Arrestins mediate agonist-dependent desensitization of G protein-coupled receptors and target the receptors to clathrin-coated pits for internalization. Here we report an expanded role of beta-arrestins in promoting clathrin-mediated endocytosis of a tyrosine kinase growth factor receptor, i.e. the insulin-like growth factor I (IGF-1) receptor. beta-Arrestins bind to the ligand-occupied IGF-1 receptors, promote their endocytosis, and enhance IGF-1-dependent mitogen-activated protein kinase phosphorylation and DNA synthesis. Our results suggest a role for beta-arrestins in regulating mitogenic signaling and clathrin-mediated endocytosis of receptors not classically coupled to G proteins.  相似文献   

13.
Guanosine triphosphatase activating protein (GAP) is an essential component of Ras signaling pathways. GAP functions in different cell types as a deactivator and a transmitter of cellular Ras signals. A domain (amino acids 275 to 351) encompassing the Src homology region 3 (SH3) of GAP was found to be essential for GAP signaling. A monoclonal antibody was used to block germinal vesicle breakdown (GVBD) induced by the oncogenic protein Ha-ras Lys12 in Xenopus oocytes. The monoclonal antibody, which was found to recognize the peptide containing amino acids 275 to 351 within the amino-terminal domain of GAP, did not modify the stimulation of the Ha-Ras-GTPase by GAP. Injection of peptides corresponding to amino acids 275 to 351 and 317 to 326 blocked GVBD induced by insulin or by Ha-Ras Lys12 but not that induced by progesterone. These findings confirm that GAP is an effector for Ras in Xenopus oocytes and that the SH3 domain is essential for signal transduction.  相似文献   

14.
Interchain cystines of PDGF-BB dimer were characterized by Edman reaction and by SDS-PAGE analysis on the protein which was chemically cleaved at Trp-40. It was found that Cys-43 has a key role in dimer formation, asymmetrically cross-linked to a cysteine residue of another identical subunit. The remaining cystines participate in the intramolecular disulfide linkages. Pepsin digestion of PDGF-BB dimer generated several small peptides and one ubiquitous Cys-containing peptide. Sequence analyses of several Cys-containing peptides indicated the existence of three intramolecular disulfide linkages including Cys-16--Cys-60, Cys-49--Cys-97, and Cys-53--Cys-99. Two interchain disulfide bonds of Cys-43--Cys-52 between two subunits were deduced from the partial reduction and alkylation of PDGF-BB. This study provides chemically determined disulfide linkages of PDGF-BB.  相似文献   

15.
Factor VIIa-tissue factor complex formation initiates the extrinsic blood coagulation pathway. We investigated factor VIIa's first epidermal growth factor-like (egf1) domain's role in the catalytic activity increase caused when factor VIIa binds tissue factor. Starting with a factor VIIa with factor IX's egf1 domain (factor VII(IXegf1)a), we made 4 proteins with egf1 residues changed to those in factor VIIa, including E51A, D64Q, FG74-75PA, and K79R. We measured each enzyme's affinity for tissue factor and determined the enzymes' kinetic constants with and without tissue factor. The Kd for factor VII(IXegf1)a binding to tissue factor was 60-200-fold higher than that of factor VIIa depending on the assay employed. Only factor VII(IXegf1)a with the K79R (K79Ra) mutation, among all the mutants, had an effect on binding with a Kd 3-8-fold lower than that of factor VII(IXegf1)a. In kinetic analyses with a small peptide substrate, in the absence of tissue factor, factor VIIa, factor VII(IXegf1)a, and K79Ra had similar kcat's and Km's. With tissue factor, due to a kcat decrease, factor VII(IXegf1)a's catalytic efficiency (kcat/Km) was 2-fold lower than factor VIIa's. K79Ra's catalytic efficiency was intermediate between those of factor VIIa and factor VII(IXegf1)a. With factor X as substrate, in the absence of tissue factor, K79Ra and factor VII(IXegf1)a had catalytic efficiencies 1.5-fold and 2-fold lower than that of factor VIIa. In contrast, with tissue factor and with factor X as substrate, due to higher Km's, factor VII(IXegf1)a and K79Ra had only 9% and 33% of factor VIIa's catalytic efficiency. Our results suggest the egf1 domain's role in tissue factor binding involves critical alignment of tissue factor with factor VIIa's catalytic domain. Proper alignment in turn promotes optimal catalytic activities.  相似文献   

16.
Autocrine EGF-receptor (EGFR) ligands are normally made as membrane-anchored precursors that are proteolytically processed to yield mature, soluble peptides. To explore the function of the membrane-anchoring domain of EGF, we expressed artificial EGF genes either with or without this structure in human mammary epithelial cells (HMEC). These cells require activation of the EGFR for cell proliferation. We found that HMEC expressing high levels of membrane- anchored EGF grew at a maximal rate that was not increased by exogenous EGF, but could be inhibited by anti-EGFR antibodies. In contrast, when cells expressed EGF lacking the membrane-anchoring domain (sEGF), their proliferation rate, growth at clonal densities, and receptor substrate phosphorylation were not affected by anti-EGFR antibodies. The sEGF was found to be colocalized with the EGFR within small cytoplasmic vesicles. It thus appears that removal of the membrane-anchoring domain converts autocrine to intracrine signaling. Significantly, sEGF inhibited the organization of HMEC on Matrigel, suggesting that spatial restriction of EGF access to its receptor is necessary for organization. Our results indicate that an important role of the membrane-anchoring domain of EGFR ligands is to restrict the cellular compartments in which the receptor is activated.  相似文献   

17.
Vascular endothelial growth factor (VEGF) is a dimeric hormone that controls much of vascular development through binding and activation of its kinase domain receptor (KDR). We produced analogs of VEGF that show it has two receptor-binding sites which are located near the poles of the dimer and straddle the interface between subunits. Deletion experiments in KDR indicate that of the seven IgG-like domains in the extracellular domain, only domains 2-3 are needed for tight binding of VEGF. Monomeric forms of the extracellular domain of KDR bind approximately 100 times weaker than dimeric forms showing a strong avidity component for binding of VEGF to predimerized forms of the receptor. Based upon these structure-function studies and a mechanism in which receptor dimerization is critical for signaling, we constructed a receptor antagonist in the form of a heterodimer of VEGF that contained one functional and one non-functional site. These studies establish a functional foundation for the design of VEGF analogs, mimics, and antagonists.  相似文献   

18.
Brain swelling is a serious complication associated with focal ischemia in stroke and severe head injury. Experimentally, reperfusion following focal cerebral ischemia exacerbates the level of brain swelling. In this study, the permeability of the blood-brain barrier has been investigated as a possible cause of reperfusion-related acute brain swelling. Blood-brain barrier disruption was investigated using Evans Blue dye and [14C]aminoisobutyric acid autoradiography in a rodent model of reversible middle cerebral artery (MCA) occlusion. Acute brain swelling and cerebral blood flow (CBF) during ischemia and reperfusion were analyzed from double-label CBF autoradiograms after application of the potent vasoconstrictor peptide endothelin-1 to the MCA. Ischemia was apparent within ipsilateral MCA territory, 5 min after endothelin-1 application to the exposed artery. Reperfusion, examined at 30 min and 1, 2, and 4 h, was gradual but incomplete within this time frame in the core of middle cerebral artery territory and associated with significant brain swelling. Ipsilateral hemispheric swelling increased over time to a maximum (>5%) at 1-2 h after endothelin-1 but was not associated with a significant increase in the ipsilateral transfer constant for [14C]aminoisobutyric acid over this time frame. These results indicate that endothelin-1 induced focal cerebral ischemia is associated with an acute but reversible hemispheric swelling during the early phase of reperfusion which is not associated with a disruption of the blood-brain barrier.  相似文献   

19.
The ErbB family includes two receptors, ErbB-1 and ErbB-3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB-2. Unlike ErbB-1 and ErbB-2, the intrinsic tyrosine kinase of ErbB-3 is catalytically impaired. By using interleukin-3-dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB-3 is devoid of any biological activity but both ErbB-1 and ErbB-2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB-3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter-receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB-3-containing complexes, especially the ErbB-2/ErbB-3 heterodimer, are more active than ErbB-1 complexes. Nevertheless, ErbB-1 signaling displays dominance over ErbB-3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen-activated protein kinases ERK and c-Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase-defective ErbB-3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号