共查询到19条相似文献,搜索用时 78 毫秒
1.
在改进噪音环境下的语音识别率中,来自于说话人嘴部的可视化语音信息有着显著的作用.介绍了在视听语音识别(AVSR)中的重要组成部分之一:可视化信息的前端设计;描述了一种用于快速处理图像并能达到较高识别率的人脸嘴部检测的机器学习方法,此方法引入了旋转Harr-like特征在积分图像中的应用,在基于AdaBoost学习算法上通过使用单值分类作为基础特征分类器,以级联的方式合并强分类器,最后划分检测区域用于嘴部定位.将上述方法应用于AVSR系统中,基本上达到了对人脸嘴部实时准确的检测效果. 相似文献
2.
3.
一种快速图像处理的积分图方法 总被引:1,自引:1,他引:1
在基于图像的人工智能应用系统中,图像处理起着重要的作用.但是,其速度经常不能满足系统的需求,特别是实时系统.文中提出了一种快速图像处理的积分图方法,并且给出它的一些典型应用.它不仅能提高常用的一些空间域图像处理算法的速度,而且为图像理解提供了新的特征提取工具.试验结果表明积分图方法比传统的方法性能更好. 相似文献
4.
语音识别技术一直是学术界研究的热点。语音特征信息综合是提高语音识别系统性能的一条有效途径。提出了一种语音特征信息综合快速算法——N-BEST算法。该方法可以较大地减少语音特征信息综合的运算量,提高特征信息综合语音识别系统的运行速度。 相似文献
5.
一种精确检测语音端点的方法 总被引:1,自引:0,他引:1
端点检测是语音识别中的一项关键技术,端点检测的准确性对语音识别的性能有很大影响,特别是对端点检测比较敏感的语音识别算法。本文引用窗长动态变化的端点检测技术,并将传统的双门限端点检测算法和窗长动态改变的端点检测技术结合起来用于语音端点检测。大量实验表明这种技术可以比较精确的检测语音端点,特别是地检测语音的起始端点中有很大的优势。使用改进后的语音端点检测技术,可以有效地提高语音识别率。 相似文献
6.
7.
一种改进的检测语音端点的方法 总被引:8,自引:9,他引:8
在语音识别系统中产生错误识别的原因之一是端点检测有误差。针对短时过零率对噪声的存在非常敏感,本文引入一种判决门限,修正了传统过零率的计算。同时引入窗长动态改变的端点检测方法,并将两者有机的融合到传统的双门限端点检测算法中。试验表明这种算法可以比较精确的检测出语音端点,适合于对端点检测比较敏感的语音识别算法。使用改进后的语音端点检测方法,可以有效地提高语音识别率。 相似文献
8.
9.
10.
11.
稳健语音识别技术研究 总被引:4,自引:0,他引:4
文章在简单叙述稳健语音识别技术产生的背景后,着重介绍了现阶段国内外有关稳健语音识别的主要技术、研究现状及未来发展方向。首先简述了引起语音质量恶化、影响语音识别系统稳健性的干扰源。然后介绍了抗噪语音特征的提取、声学预处理、麦克风阵列及基于人耳的听觉处理等技术路线及发展现状。最后讨论了稳健语音识别技术未来的发展方向。 相似文献
12.
在基于几何模型的手势识别方法中,尺度空间特征检测是一种最常用的方法。由于传统方法涉及大量的高斯卷积运算,计算非常复杂。提出了一种快速的尺度空间特征检测方法,采用一组简单的矩形特征模板近似传统方法中复杂的高斯导数卷积模板,得到了尺度空间几何特征的快速检测子。通过对手势图像中Blob和Ridge结构的检测,得到手掌和手指结构的描述,进而完成手势识别。矩形特征模板的卷积可以用积分图进行快速计算,该方法使特征检测的速度得到了很大提高。在标准数据集和自然环境图像数据上的实验结果表明,该方法在保证识别准确率的同时,有效地提高了手势识别的实时性。 相似文献
13.
基于CHMM的语音识别系统识别率高,但却占用系统资源较大,从而限制了其在资源受限的实际应用环境的有效实现.针对上述问题,给出特征参数选择的理论依据,弥补以往研究仅从实验结果分析,缺少理论依据的不足;同时提出根据各特征参数对系统误识率的影响程度来选择特征参数的新方法.该方法能使系统在训练,识别过程中的计算量和存储量明显减小,同时系统误识率不会显著改变.这为资源受限的语音识别系统,提供新的思路和有效的特征参数选择方法. 相似文献
14.
情感识别是多学科交叉的研究方向,涉及认知科学、心理学、信号处理、模式识别、人工智能等领域的研究热点,目的是使机器理解人类情感状态,进而实现自然人机交互.首先,从心理学及认知学角度介绍了语音情感认知的研究进展,详细介绍了情感的认知理论、维度理论、脑机制以及基于情感理论的计算模型,旨在为语音情感识别提供科学的情感理论模型;然后,从人工智能的角度,系统地总结了目前维度情感识别的研究现状和发展,包括语音维度情感数据库、特征提取、识别算法等技术要点;最后,分析了维度情感识别技术目前面临的挑战以及可能的解决思路,对未来研究方向进行了展望. 相似文献
15.
本文设计了一个基于VC的语音识别软件,其主要功能有语音信号的录制、预处理及识别语音。通过实验表明,系统能够达到简单识别语音的要求。 相似文献
16.
嵌入式语音识别系统的快速高斯计算实现 总被引:1,自引:0,他引:1
在基于隐含马尔可夫模型(HMM)的连续语音识别系统中,模型状态的高斯分布输出概率的计算会占到整个系统计算量的30%到70%。该文基于语音识别在缺乏浮点运算能力的嵌入式系统上的实现,给出了一种快速高斯计算的新方法。该方法使所有模型状态都共享一个有限的高斯输出概率集,以减少计算复杂度,并且无需重新训练模型参数。在嵌入式平台上的实验数据表明,识别速度能获得15%~25%的提高,而且识别率没有大幅降低。 相似文献
17.
一种基于MVDR和CCBC的抗噪语音识别方法 总被引:1,自引:0,他引:1
提出了一种适用于抗噪声语音识别的方法,其特征提取过程基于最小方差无失真响应(Minimum variance distortionles sresponse,MVDR)谱估计方法,并对该特征进行频率弯折以提高其知觉分辨率,最后使用基于正则相关分析的谱变换补偿(Canonical correlation based on compensation,CCBC)法对该特征进行自适应处理,从而提高了系统的鲁棒性。在展览馆噪声、人群噪声和汽车噪声下,与基于传统Mel倒谱系数(MFCC)特征的系统进行了对比实验,结果表明使用本文方法的语音识别系统的识别率得到了显著的提高。 相似文献
18.
在汉语语音识别中应用声调信息的研究 总被引:6,自引:0,他引:6
声调信息在汉语普通话语音识别系统中,具有非常重要的意义。文章实现了声调特征提取的算法,并主要研究了如何应用这些特征,才能最大限度地发挥声调信息的作用,提高识别系统的性能。实验结果表明,声调特征可以和识别系统原有的特征很好地结合,合理应用声调信息能有效地提高识别系统的性能,系统的误识率下降了22.26%。 相似文献
19.
本文介绍了语音情感识别领域的最新进展和今后的发展方向,特别是介绍了结合实际应用的实用语音情感识别的研究状况。主要内容包括:对情感计算研究领域的历史进行了回顾,探讨了情感计算的实际应用;对语音情感识别的一般方法进行了总结,包括情感建模、情感数据库的建立、情感特征的提取,以及情感识别算法等;结合具体应用领域的需求,对实用语音情感识别方法进行了重点分析和探讨;分析了实用语音情感识别中面临的困难,针对烦躁等实用情感,总结了实用情感语音语料库的建立、特征分析和实用语音情感建模的方法等。最后,对实用语音情感识别研究的未来发展方向进行了展望,分析了今后可能面临的问题和解决的途径。 相似文献