首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
系统研究了纳米SiO2对水泥净浆流动性、水泥砂浆强度、混凝土强度和动弹性模量、混凝土渗透性能的影响,并采用X射线衍射(XRD)分析了不同掺量纳米SiO2对混凝土不同水化阶段水化产物的影响规律,同时借助电镜扫描(SEM)分析了水化产物微观结构受到的影响,从宏观性能和微观机理两方面探讨了纳米SiO2对水泥基材料的影响.结果表明,纳米SiO2会影响水泥水化尤其是早龄期水化速度,从而提高混凝土和砂浆强度,提高混凝土的抗渗性能,降低混凝土的动弹性模量.一定范围内,随着纳米SiO2掺量的增加,水泥水化产物受影响的程度逐渐增大,通过XRD和SEM分析水化产物微观结构变化规律,发现与宏观力学性能和耐久性能吻合较好.纳米SiO2本身的特性(粒径大小、表面活性、分散性能等)决定其对水泥水化过程和产物的影响程度.  相似文献   

2.
徐子芳  张明旭  李金华 《硅酸盐通报》2012,31(2):401-405,415
为了提高低标号水泥基材料的力学性能和耐久性,基于纳米粉体的特殊性能与效应,采用超细硅灰对水泥基材料进行改性。除进行宏观力学性能和耐久性测试之外,运用XRD、TGA-DTA、SEM等方法,研究了超细硅灰改性水泥基材料的相组成、显微结构及微观形貌。结果表明:水泥基复合材料最佳配比为水泥:粉煤灰:超细硅灰:早强减水剂为1:1:0.025:0.015,此时超细硅灰能够很好地促进水泥水化,使水化产物增多,水泥石基体相的显微结构致密,C-S-H凝胶交织成致密的网状结构,结构缺陷显著降低,导致强度明显增大、耐久性显著提高。  相似文献   

3.
在水泥胶砂中掺入适当配比的煤矸石可以增加水泥砂浆的强度,尤其是早期强度.与不添加煤矸石的基准砂浆相比,煤矸石的掺量为9%时,砂浆3 d抗压强度提高1.0 MPa,28 d抗压强度提高2.0 MPa.XRD、TGA-DTA和SEM分析证实:加入煤矸石促进了水泥砂浆7 d早期水化反应,生成水化产物钙矾石、C-S-H凝胶、AFm和氢氧化钙,且水化产物的数量亦不同,各产物的晶型结构也不相同,改性后水化产物增多,水化速率加快,因而影响砂浆的宏观力学强度.  相似文献   

4.
黄展魏  陈伟  李秋  王蒙  范剑锋 《硅酸盐通报》2017,36(8):2530-2535
通过对水泥砂浆中掺加水性环氧树脂,制备了水性环氧树脂改性水泥砂浆,研究了不同聚灰比下,水性环氧树脂对水泥砂浆水化和强度的影响.运用XRD、TG/DSC、SEM、FTIR微观测试手段,研究了水性环氧树脂对水泥砂浆水化产物的影响.研究结果表明:水性环氧树脂可形成聚合物膜会延迟水泥水化;水性环氧树脂的加入会降低水泥砂浆的抗压强度;当聚灰比在2%范围以内,水性环氧树脂可以提高水泥砂浆的抗折强度.  相似文献   

5.
新型混凝土表面防护材料的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以纳米SiO2、硅灰、粉煤灰作为矿物掺和料对水泥基材料进行改性,形成混凝土表面防护层.利用RCM法测定氯离子扩散系数,并通过SEM、XRD、DSC等手段研究改性水泥基材料的水化产物组成及微观结构,分析改善机理.结果表明:混凝土表面砂浆防护层能将混凝土抗氯离子侵蚀能力提升56.75%,并且这种提升效果随着粉煤灰、硅灰、纳米SiO2的掺入更加明显,且其提升能力依次增加;粉煤灰依靠其微集料效应及填充效应,增强了水泥石的密实程度;纳米SiO2、硅灰依靠其火山灰活性促进水泥的水化并产生二次水化,进而提升抗氯离子侵蚀能力.研究结果说明了利用无机矿物掺合料对水泥基材料进行改性形成防护层可明显提升混凝土的抗氯离子侵蚀能力,为进一步研究无机混凝土表面防护体系提供了研究基础.  相似文献   

6.
碳纳米管-水泥基复合材料的力学性能和微观结构   总被引:8,自引:1,他引:7  
研究了掺碳纳米管水泥砂浆的力学性能和微观结构,并与掺碳纤维水泥砂浆的性能进行了对比。低含量的碳纳米管-水泥复合材料具有良好的抗压强度和抗折强度。用扫描电镜对碳纳米管-水泥复合材料以及碳纤维-改性水泥复合材料的微观结构进行了分析。结果表明:复合材料中碳纳米管表面被水泥水化产物包裹,同时碳纳米管水泥砂浆的结构密实。碳纤维表面光滑,在碳纤维与水泥石之间存在明显裂缝。孔隙率测试结果表明碳纳米管的掺入改善了材料的孔结构。  相似文献   

7.
在水泥基材料中掺入不同pH值的纳米硅溶胶,研究了其对水泥胶砂力学性能的作用规律,并通过XRD、SEM微观测试手段分析了硅溶胶中纳米SiO2的火山灰活性及其对水泥石微观结构的影响.研究结果表明:酸性、中性及碱性硅溶胶在适当掺量下可提高水泥砂浆的力学性质、改善水泥石的微观结构;酸性和中性硅溶胶在碱性条件下极易团聚,纳米二氧化硅粒子的火山灰效应难以充分发挥,在最佳掺量下其对水泥砂浆的增强效果不及碱性硅溶胶.  相似文献   

8.
为了探讨高温引起水泥基材料力学性能劣化的机理,通过强度、X射线衍射和扫描电镜观测试验,研究了高温对水泥基材料抗压强度和微观结构的影响.结果 表明:200℃时水泥砂浆抗压强度下降14.8%,400℃时强度有所恢复,600℃和800℃时,水泥砂浆抗压强度分别下降39.9%和72.3%.200 ℃时水泥浆体中钙矾石的衍射峰消失,高于400℃时Ca(OH)2开始脱水分解,高于600 ℃时CaCO3开始脱水分解;随着温度升高,水泥水化产物分解得到的CaO、C2S和C3S等逐渐增多.低于400℃时,水泥浆体微观形貌没有明显变化,超过400 ℃时,随着温度的升高,水泥浆体微观形态由致密的层状和絮凝状变为疏松多孔的片状和碎屑状.高温引起水泥水化产物脱水分解、孔隙增多是水泥基材料力学性能劣化的主要因素.  相似文献   

9.
苯丙乳液作为聚合物改性材料已经在水泥基材料中得到应用,而对其改性机理尚不清楚.本文测试了苯丙乳液改性高强水泥基材料的工作性、凝结时间及力学性能,利用微量热仪法与X射线衍射(XRD)分析了苯丙乳液对水泥基材料水化的影响,通过扫描电镜(SEM)及能谱分析(EDS)研究了其微观结构.研究结果表明,苯丙乳液延缓了水泥基材料的水化与二次水化反应,苯丙乳液能有效改善高强水泥基材料界面结构与水泥石结构.苯丙乳液与水泥或其水化产物间存在化学反应的可能性.  相似文献   

10.
柴倩  张耀君  刘礼才 《硅酸盐通报》2014,33(9):2354-2359
化学激发钢渣基胶凝材料的抗压强度低,难以满足建筑材料对强度的要求;通过掺入少量硅灰以加速其水化反应,改善化学激发钢渣基胶凝材料的力学性能.当碱激发剂Na2SiO3·9H2O用量11wt%,硅灰掺量10wt%时,碱激发硅灰-钢渣基胶凝材料在室温养护28 d后,其抗压强度达56.7 MPa,较不掺硅灰的胶凝材料强度提高了59.72%.XRD、SEM及MIP结果表明:钢渣在碱激发作用下,随龄期的延长,氢氧化钙量逐渐减少,无定形的水化产物增多,微观结构更加致密,加入硅灰后,最可几孔径明显减小,无害孔的数量明显增多,导致其强度大幅度提高.  相似文献   

11.
纳米级SiOx与硅灰对水泥基材料的复合改性效应研究   总被引:19,自引:2,他引:19  
唐明  巴恒静  李颖 《硅酸盐学报》2003,31(5):523-527
用TEM测试评价了纳米级SiOx与硅灰的颗粒形貌,在分别研究纳米级SiOx硅灰的活性和其对水泥基复合材料改性的基础上,将纳米级SiOx与硅灰复合作为高活性的组合料,探索了对水泥基材料的复合改性效应,除进行宏观力学性能测试评价之外,用DTA,XRD和SEM分析了水泥基材料的组成、显微结构。研究表明,纳米级SiOx和硅灰具有很高的活性和表面效应,水泥石基体相的显微结构致密,CSH凝胶交织成致密的网状结构,结构缺陷显著降低。DTA,XRD分析表明,水泥石中Ca(OH)2明显减少,由Ca(OH)2带来的砂浆和混凝土集科界面过渡区的缺陷将大大改善。此外,纳米级SiOx与硅灰复合后对砂浆的力学性能改善效果比水泥净浆更为显著。  相似文献   

12.
张宇  杨家豪  刘瑜  宋子玉  何涵潇  赵风清 《化工进展》2022,41(10):5637-5644
为改善Ⅱ型无水磷石膏水化活性低、凝结硬化缓慢的问题,研制了一种复合助剂(β-半水石膏6%、改性钢渣3%、K2SO4 2%、铝酸钙水泥0.5%)。研究表明,掺入复合助剂后Ⅱ型无水磷石膏初凝时间由744min (空白样)缩短至76min (改性样)。在此基础上添加25%的高炉矿渣微粉改善力学性能和耐水性,改性后的胶凝材料绝干抗压强度达到15.4MPa,软化系数达到0.83。研究了胶凝体系的水化率、液相离子浓度随时间的变化规律,结合X射线衍射(XRD)和扫描电子显微镜(SEM)对水化产物和水化硬化机理进行了分析。复合助剂加速了Ⅱ型无水磷石膏的溶解及二水石膏晶核的生成和长大,提高了Ⅱ型无水磷石膏的水化率,与矿渣协同作用促进生成3CaO·Al2O3·3CaSO4·32H2O、3CaO·Fe2O3·3CaSO4·32H2O等多种低溶度积复盐,改善了胶凝材料的凝结硬化性能和耐水性。  相似文献   

13.
为研究混磨不同细度石灰石粉-粉煤灰对水泥基胶凝材料水化进程和早期力学性能的影响规律,本文采用等温量热法测定了不同细度复合胶凝体系在水化温度为20 ℃时的水化放热速率和放热量,根据Krstulovic-Dabic提出的水化动力学模型计算了复合胶凝体系水化反应各阶段的动力学参数。结果表明:增加石灰石粉和粉煤灰的细度可促进复合胶凝体系水化产物的结晶成核与晶体生长,缩短水化诱导期结束时间和达到最大放热速率时间,加速水泥的水化反应速率。石灰石粉和粉煤灰细化会缩短相边界反应过程时间,使复合胶凝体系在水化程度更高时发生反应控制机制转变。抗压强度试验表明增加细度可明显提高胶砂试件的早期强度,其后期强度保持稳定。  相似文献   

14.
针对水泥路面表面损伤修补材料应当具有良好的适应性、界面粘结强度高和较强耐久性等特点,对砂浆类修补材料进行复合改性,研发出一种新型有机-无机类复合修补材料--CAE复合胶浆.对不同龄期的CAE砂浆进行抗折、抗压试验以及冲击韧性试验并采用XRD、红外光谱和SEM等微观测试方法研究其硬化机理.研究结果表明,环氧乳液掺量为30%时,CAE复合胶浆抗折强度与普通砂浆差别不大,抗压强度较普通砂浆低,但冲击韧性显著提高.加入乳化沥青和环氧乳液能够延缓水泥水化但不能阻碍水化进程,环氧乳液能够在CAE复合胶浆中完全固化,乳化沥青和环氧乳液固化形成的网络结构与水泥水化产物相互交织穿插,有效改善了CAE复合胶浆材料的孔隙结构.  相似文献   

15.
采用sol-gel方法制备了以改性直接大红4B偶氮染料为生色团,以钛酸正丁酯(TBOT)为无机前驱体的有机/无机杂化聚合物热释电材料。利用红外、紫外、差热分析、原子力等表征手段对该杂化材料进行了分析。结果表明,所制备的杂化材料取向稳定性好,且热释电性能在室温下较好,系数高达1.98×10-6C/cm2K。  相似文献   

16.
为了促进不锈钢厂废渣的资源化利用,以红土镍矿酸性高炉渣和不锈钢渣为主要原料制备胶凝材料,研究机械活化和不锈钢渣质量掺量对矿渣胶凝材料性能的影响,并利用XRD、SEM对胶凝材料的水化产物及微观结构进行分析。结果表明,机械活化主要通过改变原料的比表面积和颗粒级配来影响胶凝材料性能,且矿渣中细颗粒占比是影响其胶凝活性的关键因素,适宜的球磨时间为45 min,此时矿渣比表面积达到524.66 m2/kg。不锈钢渣与酸性矿渣之间存在协同作用,当不锈钢渣质量掺量为20%时,胶砂试块3 d、7 d、28 d抗压强度分别为17.8 MPa、24.3 MPa 和34.8 MPa,抗折强度分别为4.5 MPa、6.2 MPa和6.8 MPa,达到P·S 32.5R矿渣硅酸盐水泥强度标准。不锈钢渣的掺入在水化早期和后期都促进钙矾石及C-S-H凝胶的生成,对胶砂试块各龄期强度都有促进作用,而未水化的钢渣细颗粒也起着微集料填充作用,有利于胶凝材料早期强度的提高。  相似文献   

17.
白色硅酸盐水泥(白水泥)具有较好的白度,是一种具有装饰效果的胶凝材料。针对该种水泥凝结时间长、早期强度发展慢及收缩变形较大等问题,采用高贝利特硫铝酸盐水泥对白水泥进行改性,系统研究了掺入10%~30%(质量分数)的高贝利特硫铝酸盐水泥对白水泥凝结时间、胶砂强度和自由膨胀率的影响。使用水化微量热仪、XRD、TGA、SEM等方法对复合胶凝体系水化过程、水化产物和微观形貌进行分析。结果表明:高贝利特硫铝酸盐水泥增大了白水泥水化放热率,显著缩短了白水泥的凝结时间;改性后的白水泥水化产物生成了大量的AFt,穿插生长在C-S-H凝胶中,消耗掉了部分Ca(OH)2,使结构更加致密,强度更高,膨胀性能更好。  相似文献   

18.
通过设计正交实验,测定碳酸化水泥复合胶凝材料与纯水泥的水化产物及观察硬化浆体的微观形貌,研究了水泥的碳酸化工艺条件。结果表明:碳酸化水泥复合胶凝材料3d、28d的抗压强度普遍高于纯水泥,且强度等级由42.5提高至52.5;水量、碳酸化温度对碳酸化复合胶凝材料3d抗压强度有显著影响,且水量的影响作用较大;水泥的碳酸化最佳工艺条件为水量:0.2%、CO2压力:0.2MPa、碳酸化温度:25℃、碳酸化时间:30min;复合胶凝材料3d水化产物中有CaCO3微晶析出,28d水化产物中有较多的碳铝酸钙生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号