首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contribution of Sucrose to Nonenzymatic Browning in Potato Chips   总被引:1,自引:0,他引:1  
The contribution of sucrose, a nonreducing sugar, to nonenzymatic browning in potato chips was investigated using a model system of buffered sugars and glycine applied to filter paper discs that were then heated in oil. It was found by fiber optic colorimetry that sucrose and the amino acid produced darkening comparable to that of reducing sugars. It is postulated that sucrose enters the reaction by thermal hydrolysis to yield glucose and fructose. Addition of glucose and glycine to potato slices by vacuum infiltration resulted in increased darkening after frying but the sugar proved to be the limiting factor in nonenzymatic browning of potato chips, emphasizing the importance of sucrose in this reaction.  相似文献   

2.
The color of fried potato products is limited by reducing sugars, but can be affected by free amino acids. Filter paper discs saturated with solutions of amino acids in combination with glucose, fructose and sucrose were fried in oil to investigate color formation. Four phases of color development were identified; equilibrium, lag, rapid and slow phase, corresponding to the water content of the system. Lysine, 7-aminobutyric acid and glycine produced most color and glutamic acid least. Fry color of glucose and fructose systems was very similar, but sucrose systems produced less color. Glucose and fructose systems were not affected by pH changes, but there was a slight effect on sucrose systems.  相似文献   

3.
Color development during potato frying was studied. Increments of reducing sugars led to increase in color of fried potatoes. For L (luminosity) between 60–51, corresponding to a reducing sugar content of 120–140 mg %, an acceptable color was obtained. Both amino acids and reducing sugars participated in the color development of potato during frying, with the amount of reducing sugars being the limiting factor. Fructose yielded the highest browning followed by glucose. Sucrose addition caused practically no change in the final color of the fried potato. At low content of reducing sugars the reaction followed first-order kinetics, the activation energy, Ea, being equal to 31 Kcal mol-1.  相似文献   

4.
The objective of this work was to study the kinetics of browning during deep-fat frying of blanched and unblanched potato chips by using the dynamic method and to find a relationship between browning development and acrylamide formation. Prior to frying, potato slices were blanched in hot water at 85 °C for 3.5 min. Unblanched slices were used as the control. Control and blanched potato slices (Panda variety, diameter: 37 mm, width: 2.2 mm) were fried at 120, 150 and 180 °C until reaching moisture contents of ∼1.8% (total basis) and their acrylamide content and final color were measured. Color changes were recorded at different sampling times during frying at the three mentioned temperatures using the chromatic redness parameter a1. Experimental data of surface temperature, moisture content and color change in potato chips during frying were fit to empirical relationships, with correlation coefficients greater than 90%. A first-order rate equation was used to model the kinetics of color change. In all cases, the Arrhenius activation energy decreases alongside with decreasing chip moisture content. Blanching reduced acrylamide formation in potato chips in ∼64% (average value) in comparison with control chips at the three oil temperatures tested. For the two pre-treatments studied, average acrylamide content increased ∼58 times as the frying temperature increased from 120 to 180 °C. There was a linear correlation between acrylamide content of potato chips and their color represented by the redness component a1 in the range of the temperatures studied.  相似文献   

5.
ABSTRACT:  The effect of cooking method (baking compared with frying) on acrylamide level of potato chips was investigated in this study. Baking and frying experiments were conducted at 170, 180, and 190 °C using potato slices with a thickness of 1.4 mm. Raw potatoes were analyzed for reducing sugars and asparagine. Surface and internal temperatures of potato slices were monitored during the experiments to better explain the results. Fried and baked chips were analyzed for acrylamide content using an LC-MS method. The results showed that acrylamide level of potato chips prepared by frying increased with frying temperature (19.6 ng/g at 170 °C, 39 ng/g at 180 °C, and 95 ng/g at 190 °C). In baking, however, the highest acrylamide level was observed in potato chips prepared at 170 °C (47.8 ng/g at 170 °C, 19.3 ng/g at 180 °C, and 29.7 ng/g at 190 °C). The results showed that baking at 170 °C more than doubled the acrylamide amount that formed upon frying at the same temperature, whereas at 180 and 190 °C, the acrylamide levels of chips prepared by baking were lower than their fried counterparts.  相似文献   

6.
Shelf-life of potato chips fried in refined, bleached and deodorized palm olein (RBDPO), soybean oil (SBO) and their blends was evaluated. Potato slices were fried for 130 s at 180 PT 5C at 30 min intervals over a period of 5 h/day for 5 consecutive days. Indicators of frying oil quality with the shelf-life of fried products chosen were total polar component and acid value. This study indicated that RBDPO was better than SBO for the preparation of fried potato chips in terms of shelf-life of products. The blends were also slightly better than SBO with increasing proportion of RBDPO. However, the effects were minimal on the rate of development of rancidity in fried products beyond the fourth day of frying in the frying medium.  相似文献   

7.
Texture of potatoes with different shapes (slices and strips) were evaluated after frying and in some cases after baking. Blanched and unblanched potato slices (Bintje variety) were fried at four oil temperatures: 160, 170, 180 and 190C until reaching a moisture content of ∼1.7%. A puncture test with three point support for the slices was applied to measure the texture of potato chips using the following parameters extracted from the force versus distance curves: maximum force of break (MFB) and deformation of break (DB). These two parameters were useful to follow the changes in texture of the fried slices with moisture content at different frying temperatures. Blanched and unblanched potato strips were partially fried at 160C and 190C for 60, 90 and 120 s. The par-fried potatoes were frozen at -20C for one day after which they were baked at 200C for 15 min. The texture of the baked potato strips was evaluated using a bending test with two support points. From the force versus distance curves, two parameters were extracted: maximum force of deformation (MFD) and maximum deformation (MD). Significant higher MFB and lower DB values (P > 0.1) for unblanched fried slices indicate that these are crispier than blanched chips for moisture contents lower than 4% (6.59 N and 0.62 mm vs 5.74 N and vs 0.75 mm for unblanched and blanched chips, respectively, average values for the four frying temperatures employed). There was no effect of the frying temperature and the pretreatment (blanching or unblanching) on the texture of the frozen par-fried potatoes after baking when compared at the same residual moisture content, but blanched potato strips lost moisture more slowly both in frying and in baking.  相似文献   

8.
Effect of Raw Potato Composition on Acrylamide Formation in Potato Chips   总被引:2,自引:0,他引:2  
ABSTRACT: Recent studies have shown that subjecting foods to high temperatures during cooking processes such as frying gives rise to the formation of acrylamide. Several factors including product composition and processing conditions affect the rate of formation of this chemical in starch-rich foods. Low reducing sugar and the amino acid asparagine content is desired when cooking because the formation of acrylamide is attributed to the Maillard reaction that occurs between these food components. The cultivar 'Atlantic' was used to determine the effect of potato components (reducing sugars and asparagine) on acrylamide content during frying in a traditional fryer. A model system was developed by infusing leached potato slices with predetermined amounts of glucose and asparagine. Increasing glucose and asparagine content in the slices increased the acrylamide content in the potato chips. Color could not be used as an indication of acrylamide content because potato chips with similar color had very different acrylamide concentrations.  相似文献   

9.
甘薯品种干率与油炸薯片含油量和硬度间的相关性   总被引:1,自引:0,他引:1  
选择20个干率18.72%~35.02%的甘薯品种,切成1.6~1.8 mm薄片,(135±10)℃常压油炸,测定薯片含油量和硬度.结果表明薯片含油量与干率成线性负相关,相关系数R=-0.827,薯片硬度与干率成非线性正相关,相关系数R=0.965,薯片硬度与含油量呈非线性负相关性,相关系数R=-0.890.显示油炸薯片含油量和硬度不可能同时达到最佳值.干率24%~26%的品种,薯片含油量在25%左右,硬度值650~700 g,具有较好的油炸品质,可以考虑作为油炸薯片专用品种选育的主要方向.  相似文献   

10.
Potato Chip Quality and Frying Oil Stability of High Oleic Acid Soybean Oil   总被引:2,自引:0,他引:2  
High oleic soybean (HOSBO) and low linolenic acid soybean (LLSBO) oils were evaluated individually and in a 1:1 blend along with cottonseed oil (CSO) to determine frying oil stabilities and the flavor quality and stability of potato chips. Potato chips were fried in the oils for a total of 25 h. Potato chips and oils were sampled periodically for sensory data, gas chromatographic volatile compounds, free fatty acids, and total polar compounds. Total polar compounds levels decreased with increasing amounts of oleic acid. The LLSBO had the highest overall increase (17.3%) in total polar compounds from 0 to 25 h of frying. Flavor evaluations of fresh and aged (0, 1, 3, 5, and 7 wk at 25 °C) potato chips showed differences between potato chips fried in different oil types. Potato chips fried in either LLSBO or in the 1:1 blend had significantly higher intensities of deep fried flavor than the chips fried in HOSBO. Potato chips fried in HOSBO, which had 2% linolenic acid and 1.3% linoleic acid, had significantly higher fishy flavor intensity than chips fried in the other oils. The presence of linoleic acid at a level lower than the amount of linolenic acid probably allowed for the fishy flavors from the degradation of linolenic acid in HOSBO to become more apparent than if the linoleic acid level was higher than linolenic acid. Hexanal was significantly higher in potato chips fried in LLSBO than in the chips fried in the other oils, indicating low oxidative stability during storage. Blending HOSBO with LLSBO in a 1:1 ratio not only improved flavor quality of chips compared with those fried in HOSBO, but also improved oil fry life and oxidative stability of chips compared with LLSBO.  相似文献   

11.
Two potato cultivars (Kennebec and Simcoe) and one selection (ND 860–2) were stored for 3 months at 4°, 9° and 11°C. ND 860–2 had the lowest sugar content at all storage temperatures, produced the lightest colored chips and was the only sample which gave acceptable colored chips directly from 4°C storage. In another study, three potato cultivars (Norchip, Simcoe and Onaway) and one selection (ND 860–2) were evaluated for sugar content and chip color during growth and harvest, two weeks prior and two weeks after foliar senescence, and stored under various time —- temperature regimes and upon reconditioning. ND 860–2 generally had the lowest levels of fructose, glucose and sucrose and Onaway had the highest. Storage at 5°C resulted in increases in the three sugars for all tubers, sucrose showing the most notable increase. ND 860–2 was the only sample to consistently produce acceptable colored chips directly from 5°C.  相似文献   

12.
The effect of ultrasound (480 W, 40 kHz) on the leaching of reducing sugars during the water soaking of potatoes slices (60, 70 and 80 °C- 1, 8 and 15 min) was investigated to reduce the formation of acrylamide (AA) and 5-hydroxymethylfurfural (5-HMF) in potato chips.Ultrasound (US) influenced abruptly the reducing sugar leaching during the first 15 min, significantly increasing their extraction rate (glucose: 60%, fructose: 30%) at all evaluated temperatures. When potato slices were treated with US, the formation of AA (~95%) and 5-HMF (~96%) were reduced significantly after frying. Although AA content did not correlate with glucose and fructose concentrations, 5-HMF did (r2: 0.80 and 0.83, respectively), probably because reducing sugars are their main precursors. The AA and 5-HMF concentrations of potato chips presented good correlation coefficient (r2:0.76), suggesting the use of 5-hydroxymethylfurfural as an acrylamide indicator for potato chips.  相似文献   

13.
杨琴  范柳萍 《食品工业科技》2012,33(16):138-140,144
研究了真空油炸莲子、真空油炸胡萝卜脆片、常压油炸胡萝卜脆片、常压油炸土豆脆片4种高脂食品的吸湿等温曲线。根据常用的5种等温吸附模型对4种物料的吸湿实验数据进行了拟合,比较了其拟合程度(R2)。结果表明,25℃条件下,4种高脂物料最适合的等温吸附模型都是Peleg模型,且拟合程度依次为真空油炸胡萝卜脆片、常压油炸胡萝卜脆片、真空油炸莲子、常压油炸土豆脆片。  相似文献   

14.
ABSTRACT: Influences of storage and cultivar on vacuum microwave-dried (VMD) potato chip quality were investigated. Tubers of several cultivars were stored at 12 °C for 0 to 4 mo, or at 4 °C for 5 to 10 mo, followed by reconditioning at 12 °C for 2 wk. Blanched potato slices (2.5 to 3.0 mm thick) were vacuum microwave-dried to produce fat-free potato chips. Chips were assessed by instrumental and sensory methods for texture and instrumentally for color. Tuber composition influenced chip texture but not color. Less breaking force was required for chips produced from cultivars with low specific gravity and starch contents. Tubers stored for up to 10 mo yielded chips of good quality.  相似文献   

15.
张鸿  郑志  熊宇豪  于世朗  赵妍嫣 《食品工业科技》2020,41(20):177-181,187
为研究微波辅助热风干燥预处理对油炸紫薯片品质的影响,以厚度为3 mm的新鲜紫薯片为对象,首先采用不同微波功率(259、280、358 W)辅助热风(50、60、70 ℃)干燥方式对紫薯片进行预干燥,对不同微波功率(259、280、358 W)干燥后的紫薯片油炸8、3.5、2.5 min,研究紫薯片预处理过程的干燥特性及花青素含量,以及油炸紫薯片产品的色泽、脆度、硬度和脂肪含量等。结果表明:随着微波预处理功率的升高,紫薯片达到干燥终点的时间缩短(90 min以上),平均干燥速率显著提高;并且热风干燥温度越高,微波预处理对干燥效率的促进作用也越明显。而低功率(259 W)的微波辅助50 ℃热风干燥联用更有利于干燥紫薯片花青素的留存;较低功率(259、289 W)的微波预处理不仅在保护产品颜色上具有优势,还可以使得油炸紫薯片更高的硬度和更好的脆性。在不同微波预处理功率下,油炸紫薯片的脂肪含量最低值基本一致。本研究可为微波辅助热风技术在干燥紫薯及其他农产品干燥中的应用提供参考。  相似文献   

16.
The objective of this study was to evaluate the precursors of acrylamide formation in sweet potato (SP) (Ipomoea batatas L. Lam) chips and to determine the effect of different types of vegetable oils (VOs), that is, palm olein, coconut oil, canola oil, and soya bean oil, on acrylamide formation. The reducing sugars and amino acids in the SP slices were analyzed, and the acrylamide concentrations of SP chips were measured. SP chips that were fried in a lower degree of unsaturation oils contained a lower acrylamide concentration (1443 μg/kg), whereas those fried with higher degree of unsaturated oils contained a higher acrylamide concentration (2019 μg/kg). SP roots were found to contain acrylamide precursors, that is, 4.17 mg/g glucose and 5.05 mg/g fructose, and 1.63 mg/g free asparagine. The type of VO and condition used for frying, significantly influenced acrylamide formation. This study clearly indicates that the contribution of lipids in the formation of acrylamide should not be neglected.  相似文献   

17.
Superheated steam drying (SSD) was used as a prefrying treatment prior to deep‐fat frying for potato slices. The effect of SSD at 130, 150 or 180 °C and steam velocity of 2.0 m s?1 on the fat uptake, colour and texture of fried potato chips was evaluated; microstructure and degree of starch gelatinization were also evaluated to help explain the fat uptake results. SSD and frying yielded potato chips with the fat content from 0.263 ± 0.002 to 0.304 ± 0.002 kg kg?1 (d.b.), while frying without SSD led to chips with the fat content as high as 0.359 ± 0.003 kg kg?1 (d.b.). SSD did not promote starch gelatinization. Lower fat uptake was correlated to modified surface structure and lower moisture content of potato slices prior to frying. Frying with/without SSD pretreatment yielded potato chips of similar hardness, crispness and lightness. On the other hand, SSD significantly increased redness and yellowness of the fried chips.  相似文献   

18.
Potato chips were classified in quality categories according to their color after frying at oil temperatures (120, 140, 160, and 180 ± 1 °C) and undergoing some pre-treatments (control or unblanching, blanching, and blanching plus drying). For each oil temperature, six time intervals were considered since the beginning of the frying process until the corresponding time at which potato slices reached a moisture content of 2%. In order to define quality categories according to the surface color, we worked with 79 frequent consumers of potato chips who classified the color scores of the potato chip photographs located in a standard color chart in the following categories: (1) desirable color, (2) still acceptable color and (3) nondesirable color. A sensory panel was formed with 12 judges who were selected according to simple tests of color ordering. This sensory panel evaluated the samples processed at different oil temperatures, frying times, and pre-treatments based on the standard color chart previously mentioned. For each measured point, the score from the color standard chart indicated for more than 50% of the panel members was selected. Finally, time-temperature modeling was achieved in order to get potato chip with the best color surface for the three pre-treatments tested.  相似文献   

19.
Oil uptake and texture development in fried potato slices   总被引:2,自引:0,他引:2  
The objective of this work was to study oil absorption and the kinetics of texture development of fried potato slices during frying. Prior to frying, potato slices were blanched in hot water at 85 °C for 3.5 min. Unblanched slices were used as the control. Control and blanched potato slices (Panda variety, diameter: 37 mm, width: 2.2 mm) were fried at 120, 150 and 180 °C until reaching moisture contents of 1.8% (total basis) and their texture and oil content were measured periodically. Oil uptake was higher in 15% for blanched samples than for control samples after 20 s of frying. Besides, the higher the frying temperature, the lower the oil absorption in control samples. Textural changes in fried potato slices were followed by the parameter maximum force (MF) extracted from the force vs. distance curves corresponding to different sampling times. Normalized maximum force (MF*) was used in modeling textural changes in the potato slices during frying in both the initial tissue softening process and the later crust development process. Higher temperatures accelerated these processes; however neither the temperature nor the pre-treatment had a significant effect (P > 0.05) over the final texture of the fried potato chips.  相似文献   

20.
Consumers look for products that contribute to their wellness and health, however, even health-conscious consumers are not willing to sacrifice organoleptic properties, and intense full-flavor snacks remain an important trend. The objective of this study was to examine most important quality parameters of vacuum (1.92 inHg) and atmospheric-fried carrot, potato, and apple slices to determine specific advantages of vacuum technology. Slices were fried using equivalent thermal driving forces, maintaining a constant difference between oil temperature and the boiling point of water at the working pressure (ΔT = 60 and 80 °C). This resulted in frying temperatures of 160 and 180 °C, and 98 and 118 °C, for atmospheric and vacuum frying, respectively. Vacuum-fried carrot and potato chips absorbed about 50% less oil than atmospheric-fried chips, whereas vacuum-fried apple chips reduced oil absorption by 25%. Total carotenoids and ascorbic acid (AA) were greatly preserved during vacuum frying. Carrot chips vacuum fried at 98 °C retained about 90% of total carotenoids, whereas potato and apple slices vacuum fried at 98 °C, preserved around 95% of their initial AA content. Interestingly, results showed that the antioxidant capacity of chips may be related to both the presence of natural antioxidants and brown pigments developed at elevated temperatures. PRACTICAL APPLICATION: A way to reduce detrimental effects of deep-fat frying is through operating-pressure reduction, the essence behind vacuum deep-fat frying. In this way, it is possible to remove product moisture at a low temperature in a low-oxygen environment. The objective of this research was to study the effect of oil temperature reduction when vacuum frying traditional (potatoes) and nontraditional products (carrots and apples) on most important quality attributes (vitamins, color, and oil uptake). Results are promising and show that vacuum frying can be an alternative to produce nutritious and novel snacks with desired quality attributes, since vitamins and color were greatly preserved and oil absorption could be substantially reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号